o -,

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

PUDIIC reportnz, Jurden 107 tris CONECTION Of IATOPMAtioN i S1LIMAated ta average | NOUP DEr FESDORSE. INCIAING TE TIME 1O Feviewing INSTFUCTIONS. SEArCNING eNISTING a3 sources.
gathenng ano a the cata ana ting ang re g the cotiecon Of Intormation. Sena '3 regaraing this e ©OF any otner aspect Ot thiy
collection of tfOrMation, INCIUGING SUGGEITIONS TOF reauang this Duraen. T0 Wasnngton Heacauarters Services, Directorate 10r intormation Operations and Reporty, 1215 Jetrerson
Davis gnway. Suste 1204, Arington, VA 22202-4302. and t0 the Otfice of Management and Buaget. Paoerwort Reauction Prorect (0704-0188). wasmington, DC 20503.

T AGENCY USE ONLY (Leave oiank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
31 May 1995 Final Report 1 Apr = r 95

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

An Architecture For Incremental Construction of Distributed,

Heteroi ineous Systems

DAAHO04-93-C-0013

6. AUTHOR(S) .
Wolf Kohn & John James, Intermetrics, Inc.

Anil Nerode, Director, Mathematical Sciences Institute, Cornell Univ.
Jagdish Chandra, U.S. Army Research Office

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

Intermetrics, Inc.

One Pacific Plaza

7711 Center Avenue, Suite 615
Huntington Beach, CA 92647

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U.S. Army Research Office ‘

P.0. Box 12211

Research Triangle Park, NC 27709-2211 ARO 30754.1-MA-SDI

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the

author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for publié release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
We discuss the application of the Kohn-Nerode-James optimality result of nonlinear systems optimization

to the problem of implementing high-safety, high-assurance systems. We state the central problem

of feedback control in terms of the most general categories of models (e.g. both logical models and
evolution models which are the subject of the field of hybrid systems). We discuss optimal solutions

of these nonlinear problems in terms of implementing control programs for a generic architecture
suitable for enterprise-wide coordination and control. Finally we provide definitions of enterprise-wide,
closed-1oop control problems for several large-scale systems using this architecture and discuss
synchronization with enterprise coordination processes. We summarize results for a reference architecture
being demonstrated for the Department of Defense.

0960209 083

DTIC QUALITY TrePRCTED 4

15. NUMBER OF PAGES
48

14. SUBJECT TERMS

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

- UL

NSN 7540-01-280-5500

Stanoarg Form 298 (Rev 2-89)
97:1("026 Dv ANS!H Std. 239-18

An Architecture for
Incremental Construction of Distributed,
Heterogeneous Systems

Final Technical Report (CLIN 0002AE)
Contract DAAH04-93-C-0013

Intermetrics, Inc.

An Architecture for Incremental Construction of Distributed, Heterogeneous
Systems

Wolf Kohn,”John James? ; Intermetrics, Inc.
Anil Nerodel; Director, Mathematical Sciences Institute, Cornell University
Jagdish Chandra; U.S. Army Research Office

Abstract: We discuss the application of the Kohn-Nerode-James optimality result for nonlinear
systems optimization to the problem of implementing high-safety, high-assurance systems. We
state the central problem of feedback control in terms of the most general categories of models (e.g.
both logical models and evolution models which are the subject of the field of hybrid systems).
We discuss optimal solutions of these nonlinear problems in terms of implementing control
programs for a generic architecture suitable for enterprise-wide coordination and control. Finally
we provide definitions of enterprise-wide, closed-loop control problems for several large-scale
systems using this architecture and discuss synchronization with enterprise coordination processes.
We summarize results for a reference architecture being demonstrated for the Department of
Defense. :

1. Introduction

The need for a hybrid systems approach: In this paper we elaborate on a generic software
architecture for large-scale systems provided at the first Cornell conference on hybrid systems [9,
10] and discuss application of the architecture using a recent optimization result [37] to achieve a
theoretical basis for rigorous integration of heterogeneous models. By heterogeneous models we
mean the most general categories of models (e.g. both logical models and evolution models which
are the subject of the field of hybrid systems). The term integration is commonly used to mean the
ad hoc coupling of diverse systems, achieved largely through heuristics, engineering experience
and experimentation. By rigorous integration we mean that, to the extent that the logical models
are correct, the evolution models are correct, and the composition rules are correct, our approach
for integration of heterogeneous models will extract a correct, integrated program. Moreover, this
integration mechanism is computationally tractable and epsilon-optimal within the constraints of the
qualitative and quantitative uncertainties of the composed problem.

We also assert that recent results in hybrid systems theory support this rigorous approach for
integration of diverse models and provides a path to achieving high-safety, high-assurance
computer-controlled systems. The basis for this assertion is use of a new approach for coupling of
numeric and symbolic computation which supports unification of trusted models in a single
mathematical model (the hybrid system state) which is analyzed in a single mathematical entity (the
carrier manifold) instead of experimentation with changing different kinds of trusted models in
at least two kinds of mathematical models (logic or evolution models) analyzed in fundamentally
different mathematical entities (TO topologies for logic models and Hausdorf for evolution
models). These novel extensions (the hybrid system state and the carrier manifold) of the
current control concepts of system state for evaluation of analysis results and Hausdorf topologies
(or Hardy or Hilbert spaces) for construction of mathematical proofs of properties of system state
support rigorous analysis of the most general kinds of control systems. Our approach for
~ achieving this rigor is to rely on the mathematical foundations of a formal extraction process for
construction of automata which simultaneously comply with current logical constraints and current

* partially sponsored by SDIO/IST grant DAAH04-93-C-0113
t partially sponsored by SDIO/IST grant DAAH04-93-C-0113
9 supported in part by Army Research Office contract DAAL03-91-C-0027 and by DARPA-US Army AMMCCOM
(Picatinny Arsenal, N. J) contract DAAA21-92-C-0013 to ORA Corp. and by SDIO/IST grant DAAH(4-93-C-0113

continuum constraints [7, 8, 9, 10, 12, 13, 21, 37, 47]. In this paper we will interpret the impact
a recent result concerning epsilon-optimal solution of the nonlinear Hamilton-Jacobi-Bellman
equation has on a broad range of application areas from the point of view of a generic architecture
for integration of heterogeneous components of enterprise-wide control systems [7, 8, 21, 37].
While the optimality result applies to systems in the most general sense, we limit our discussion
here to high-safety, high-assurance systems.

What is a high-safety, high assurance system? We take the description to mean a distributed, goal-
oriented system of computers, communication networks, and software applications, supervised by
people interacting with the system to achieve safe, reliable performance in the presence of system
uncertainties and disturbances. Examples include: transportation systems (like the Advanced
Automation System under development for air travel or the Intelligent Vehicle Highway System
being investigated for future highway systems); discrete manufacturing systems under
development to achieve increased agility and higher quality, batch process manufacturing systems
being developed to increase yield and quality of products; medical information systems being
developed for support of telemedicine as well as patient administration, diagnosis and treatment;
communication networks being developed for control of multimedia processes across international
borders; large-scale power systems; and military command and control systems being developed to
assist in control of the use of deadly force to increase combat effectiveness and reduce fratricide.
These systems are such that unsafe operation can cause loss of life or unreliable operation can
cause loss of revenue. Our goal is to guarantee approximately optimal control of the behavior of
the closed loop system in the presence of both qualitative and quantitative uncertainties where
"approximately optimal" control is weak or measure-valued control (in the sense of L. C. Young

[15D).

The failure of the current technology: Control science and the control industry is currently
incapable of delivering these large-scale, high-safety, high-assurance computer-controlled systems
at reasonable cost. Indeed, there have been numerous recent failures in attempts to build large-
scale, computer-controlled systems, even though the controls industry has decades of experience in
successful implementation of small-scale systems. Dr. John Cassidy recently gave a plenary
speech at the American Control Conference. In his presentation he observed that ... 77% of the
software of control systems is for implementation of logic and scheduling and 23% of the software
is for implementation of control algorithms. We still do not have a methodology for integrating

logic and control algorithms."* Dr. Cassidy has extensive experience in managing control theory
developments and supervising control implementations for General Motors, General Electric, and
United Technologies. His experience is the basis for his observation of the existing split of control
implementation software into two categories with the majority of the code being written for support
of planning and scheduling functions and a significant portion being written to implement control
algorithms. He elaborated at some length on the importance of resolving the current lack of a
methodology for integration of logic and control algorithm software, the former based on set-based
techniques, and the latter based on differential equation theory, control systems theory and analysis
techniques. This split in implementation software is the direct result of a split in the mathematical
models used for analysis and design of control systems.

Split in models: Logical models of system behavior (such as safety constraints or start-up and
shut-down conditions or interface constraints into other system components) and cognitive models
of human behavior are built using linguistic tools which depend on the set-based mathematics of
algebraic topology. Analytical models of system behavior (such as motion and position) are built
using analysis tools which depend on the continuum-based mathematics of differential operators.
Experiments are necessary to determine the behavior of the composition of models for safety,

** Dr. John Cassidy, Director of Research, United Technologies Corporation, Plenary Speech, Control
Technology and the 21st Century, American Control Conference, San Francisco, CA, 2 June 1993.

reliability and performance constraints over a broad range of logical conditions and continuum
values. The general approach currently used for verification and validation of complex systems is
to explore design failure modes and track correction of bugs in the software until a satisfactory
level of performance (absence of failure for expected operating conditions) is reached and success
is declared. Unfortunately, while it has been possible to experimentally evaluate more and more
complex finite-state machines, it is not possible (and will never be possible) to experiment with all
possible combinations of values of logical and continuum parameters for computer-controlled
systems. This leaves a nagging expectation that not all of the states of the computer finite-state
machine have been visited and tested with continuum values which might alter system
performance. Also, when new capabilities are added, new failure modes are created so the whole
testing process must begin again.

An architecture for incremental integration: This situation has led to interest by Landauer
and Bellman in pursuing new mathematical foundations for large-scale systems [38]. We agree
with Cassidy, Landauer and Bellman and submit that Kohn-Nerode hybrid systems theory is a
rigorous methodology for achieving the required incremental integration of heterogeneous models.
We believe that our recent (mathematically sound and complete) optimal control result, when
combined with the multiple-agent hybrid control architecture and component generation tools
currently under development, will provide a cost-effective engineering path for construction of
large-scale, high-safety, high-assurance systems. In achieving this integration we also believe
synchronizing events and continuum values (maintaining stable operation) across the broad range
of time scales of computer-controlled systems and synchronizing semantic agreement between
plans and implementations (maintaining consistent views) across the broad range of disciplines
needed to build computer-controlled systems requires explicit support by a generic architecture.
This is not a new position but a restatement of a long series of efforts [1, 2, 3, 4, 5, 6] focused
primarily on providing a generic architecture for manufacturing enterprises but also used for other
complex computer-controlled systems (such as mobile robots and military command and control).

In this paper we provide a summary of several applications of our Multiple-Agent Hybrid Control
Architecture (MAHCA), [7, 8, 9, 10, 12, 13, 21, 37, 47] for achieving integration of logic and
continuum models of system behavior. These examples are explained in the context of a recent
result [see 37] (the Kohn-Nerode-James optimality result) for epsilon-optimal solution of the
nonlinear Hamilton-Jacobi-Bellman (HJB) equation for a class of hybrid systems.

This paper discusses how our multiple-agent hybrid control architecture (MAHCA) is an
appropriate framework for epsilon-optimal, closed-loop control of enterprise-wide activities. The
paper is organized into five remaining sections. Section 2 provides a statement of the central
problem of feedback control in terms of the MAHCA framework. Section 3 provides a discussion
of MAHCA relative to other enterprise-wide architectures. Section 4 provides an overview of use
of the architecture for control of qualitative and quantitative attributes of several large-scale
enterprises. Section 5 provides a more detailed discussion of applying the architecture to a
Department of Defense functional activity. Section 6 provides a summary.

2. Statement of the central problem of feedback control in terms of the MAHCA
framework.

Epsilon optimality for hybrid systems is the result of: (1) explicit statements of qualitative and
quantitative models of system components, system inputs, and disturbance uncertainties; (2) the
desired qualitative and quantitative closeness constraints of the closed-loop system; and (3)
generation of programs (automata) to force closed-loop compliance with those constraints. The

problem we discuss is on-line modification of the evolution of the system:

X(1) = f(X(t), ut),t), with (1

X:I-M

M, U manifolds, u measureable, ¢ € /, interval of real line
wl->U

Our goal is to design a control law

u(t) = y(X(t), t), which alters the closed-loop evolution ()
X(1) = F(X(t), t) = f(X(2), y(X(2), 1), 1), with 3)

X(#): I > TM, , Tangent space at X
F:MxI — TM, Tangent bundle

such that closed-loop qualitative and quantitative performance requirements are met.

2.1 Explicit statement of qualitative and quantitative models and disturbance
uncertainties

We model the qualitative and quantitative behavior of the system using explicit rules which
constrict the evolution of the sytem. The knowledge base of the controller is a composition of

external rules of the form:

p.(G, S, A, E)if €(x;, ... X,) A ... A €, (X, ..., X,) A unify (x,, ..., X,; G, S, A, E) where @
G- Goal variables, S: Sensor variables, A: Actuator variables, E: Evaluation variables

and internal rules of the form:

@G oor V) I €(F1s or V) A o A€ (15 s V), Where
e/(y,, .- ¥,,) is of the form
/s Wi (Yo ¥) = VIV oo) OT

W (Y1 ves Y) # VI(P1s oor V) OF)
IV ves V) SVE(ps or y,) O
p.(G, S, A, E)
(Vs> V)

w

or .
recursion

with the syntax of the clauses similar to the Prolog language,
Head if Body ' (6)

The Head is a functional form, p(X1,. . . Xn), taking values in the binary set [true, false] with x1,
X2, . .. Xp as variables in the domain D of the controller. The variables in the clause head are

assumed to be universally quantified.

The Body of a clause is a conjunction of one or more logical terms,

eijA€2A...ACMm)

The rules for are written to capture both qualitative and quantitative constraints on system
operation. Enterprise process dynamics are modeled in terms of the conservation of the flow of
one or more enterprise process variables through a distributed logic communication network of
control agents. For example, in transportation networks, the flow of the sum of vehicles is
conserved; in communication networks the flow of unsatisfied demand for network services is
conserved; and in manufacturing the flow of product through the factory floor creates a demand for
services at work cells (demand for short) which is synchronized through conservation of the flow
of demand through the logic communication network. For communications enterprises, the service
demand represents the demand for connections, bandwidth, or higher quality of service. For
manufacturing enterprises the flow of unsatisfied demand between producers and consumers can
be used to generate actions to implement factory planning, scheduling and control functions. For
transportation systems the flow of vehicles and the (opposite direction) flow of highway voids can
be used to generate programs for traffic control [48]. The architecture of the logical
communications network is composed of connection links and agents. The agents are allocated at
the nodes of the network. As a function of time (t), the network configuration varies because new
agents are spawned and become part of the network or old ones drop out.

In equations 8 through 21 below we apply the Kohn-Nerode definition for continuity between
points in a manifold to state the problem for epsilon-optimal control of multimedia processes
associated with manufacturing [39]. Solution of the manufacturing problem is given by equations
22 and 23 [37, 39]. A discussion of application of the architecture to command and control of
military operations is given in [21]. '

Let Aj i=1,..; N(t) denote the agents active at the current time t. At each time t, the status of
each agent is given by a point in a locally differentiable manifold M [9]. The demand of an active

agent A is given by a continuous* function Dj,
<+
D; :MxT—-R (8)

Where T is the real line (time space) and R is the positive real line. A point p in the manifold M
is represented by a data structure of the form: '

p(id , proc(proc_data), media(media_data) , in(synch_data) , mp(mult_data)))

where:
id is an identifier taking values in a finite set ID, -
proc() is a relation characterizing manufacturing processes status; it depends on a list
of parameters labeled proc_data, which define the load and timing characteristics of
the process involved.
media is a relation that captures attributes of the multimedia process being
represented; it depends on a list of parameters labeled media_data; these parameters
characterize constraint instances, at that point, of the process being represented at a
level of abstraction compatible with the logic communication network.
in() is a relation carrying synchronization information of the logic communication
network with respect to the hierarchical organization of the network. Specifically, it
characterizes the protocol at the operation point. This includes information such as
priority level, connectivity and time constants.
mp() carries multiplicity information that is, it represents the level of network
usability at this point. The associated parameter list, mult_data, is composed of
statistical parameters reflecting the network’s load.

* We will explain this terminology in the cortext of our model later on in this section.

The parameter lists in the data structure of the points of M, are composed of integers, such as
number of users, reals, such as traffic loads, and discrete values such as process identifiers or
switches. These values characterize the status of the network and the active processes. Computing
the evolution of these parameters over time is the central task of the model.

The dynamics of the logic communication network is characterized by certain trajectories on the
manifold M. These trajectories characterize the flow of information through the network and its
status. Specifically, we need to define two items: 1) A generator for the demand functions :

{D,(p,t)lie(t), pe M} (10)

with I(t) the set of active agents at time t, and 2) the general structure of the functions in (3) for an
active agent at time t:

D,(p.t) = E(C!,D,e;)(p,0) (11)

Where Fj is a smooth function, D is the vector of demand functions, C; is the unsatisfied demand

function, and ¢, is the command action issued by the ith agent. We will show below that these
actions are implemented as infinitesimal transformations defined in M.

In general, a manifold M is a topological space (with topology ©) composed of three items:
1) A set of points of the form of (9), homeomorphic to RK with k an integer.

2) A countable family of open subsets of M, {U i countable} such that:
Ju =M.and | |

3) A family of smooth** functions, {(pj lp, :U; = Vj}, where V, for each j is
an open set in R“ The sets U, are referred to in the literature as coordinate

neighborhoods or charts. For each chart the corresponding function ?iis

referred to as its coordinate chart. The coordinate chart must satisfy the
condition that:

Given any charts U,, U, suchthat U;NU; #Q,

the function @: °®; : 9, (U Ny,) - o, (U N,) is smooth.

* In the literature, one usually finds the Hausdorf property in the definition of
manifolds [24]. Since this does not hold in our application, we will not discuss
it.

To customize the generic definition of manifold to our application, we start with the topology)
associated with M. The points of M have a definite structure characterized by the intervals of
parameter values in proc_data, media_data, synch_data and mult_data. The number of these
parameters equals k. The Knowledge about these parameters is incorporated into the model by

defining a topology 2 on RK[7].

** By smooth, we mean that they posses arbitrarily many continuous derivatives

The open sets in Q are constructed from the clauses! encoding what we know about the
parameters. The topology © of M is defined in terms of Q as follows:

for each open set W in Q, suchthat W <V, c R" | we require that the set ¢ (W)

be in ©. These sets form a basis for ©, so that U < M if and only if for each
p e U there is a neighborhood of this form contained in U; that is,

p €9 (W)c U, with ¢, : U; -V, achart containing p.

We amplify the results of the above discussion of the manifold toplogy in the next three figures
which provide views of:

1. the one-to-one mapping between horn clauses written in the Equational Logic Language (see
Appendix A for a discussion of ELL) and open sets in the manifold (Figure 1) such that
each open set has a corresponding chart function,

2. the evolution from one open set to another open set in the manifold, with no conflict on the
boundary (ie. ¢,¢;': U, "U; =V, NV,) (Figure 2), and .

3. each chart can be grounded such that there is a correspondence to a suitable Euclidean

space. Suppose there are n distinct parameters in the set of clauses and ¢, V; — V. c R™,
then the euclidean space is R” (Figure 3).

D, Ly(+)
/ P1
1-1 P2
— .
Pn
clauses in the

open sets in the manifold knowledge base

Figure 1. Every Rule has a 1-1 Correspondence with an Open Set

- C®

1Wwe discuss these clauses in section 3.

Figure 2. No Conflict on Open Set Boundaries

% j

Rn

Figure 3. Each chart can be grounded such that there is a correspondence to a suitable Euclidean
space

To characterize the actions commanded by the intelligent manufacturing controller, we need to
introduce the concept of derivations on M. Let Fp be the space of real-valued smooth functions f
defined near a point p in M. Let f, g be functions in Fp, A derivation of v of Fp is a map:

v:F, > F,, that follows linearity and Leibniz' rule:
v(f + g)(p) = (v(f) + v(g))(p) (Linearity)
v(f-g)(p) =(v(f)-g+f- v(g))(p) (Leibniz' Rule)

Derivations define vector fields on M and a class of associated curves called integral curves [12].
Suppose that C is a smooth curve on M, parameterized by , ¢ : I &> M with I a subinterval of
R. In local coordinates, p= el .., pK), C is given by k smooth functions:

o(t) = (¢1(t), ,¢"(t)) with derivative with respect to t given by :0(t) = ((j)‘(t), »d’k(t)\). We
introduce an equivalence relation on curves in M as the basis for the definition of tangent vectors at
a point p in M [9]. Two curves ,(t) and #:(1) passing through p are said to be equivalent at p
(notation: ¢ ~ ¢2) , if they satisfy the following conditions:

Forsomet, T inI ¢ R
¢1(t) = ¢2(T) = p, and
6.(t) = 9,(7)

If [¢] an equivalence class containing ¢ , a tangent vector to [¢1] is a derivation V], , defined in
the local coordinates (pl> - pK), by :

Let f: M - R be a smooth function. Then,

00 = $Le0 50 win p= 60) (2

The set of tangent vectors associated with all equivalence classes at p defines a tangent vector

space at p, denoted by TM,, The set of tangent spaces associated with M can be "glued" together
to form a manifold called the tangent bundle and denoted by TM:

™ = | J1M,

peM

We will explain explicitly how this glue is implemented, after we introduce the concept of a vector
field and discuss its relevance to the model.

A vector field on M is an assignment of a derivation v to each pointof M :v|, € TM, , with vIp
varying smoothly from point to point. In our model, we will always express vector fields in local
coordinates. Let (p1) o ,pk) be local coordinates then ,

j 0
v|P = Zl (p)—a-; , (13)

i}

Comparing (12) and (13) we see thatif p = ¢(t) is a parameterized curve in M whose tangent
vector at any point coincides with the value of v at the same point then,

#(t) = V|¢>(¢)

for all t. In local coordinates,p = (¢‘(t), s ¢"(t)) ‘must be a solution to the autonomous system
of ordinary differential equations:

T
9P _ 2i(p) forj = L, k (14)

In our manufacturing intelligent controller, each command is implemented as a vector field in M.
Each agent in the controller constructs its command field as a combination of 'primitive’
predefined vector fields. Since the chosen topology for M is not metrizable, given an initial
condition, we cannot guaranty a unique solution to (14) in the classical sense. However, they have
as solutions a class of continuous trajectories in M called Relaxed Curves [15], and on this class,
the solutions to (14) are unique.

Here, we describe some of the properties of relaxed curves, as they relate to our manufacturing
process model and control. For this objective, we need to introduce the concept of flows in M.
If v is a vector field, the parameterized integral curve passing through a point p in M, denoted by

¥(t,p), is termed the flow generated by v. The flow satisfies the following properties:

* Although we have expressed the tangent vector in terms of the chosen local coordinates, it can be shown that this
definition is independent of the chosen local coordinates [10].

¥(t, W(r,p)) = ¥(t+7.p) (semigroup property)

¥(0,p) = p (initial condition)

and

d .

E‘{’(t,p) = v‘\{,(t,p) (flow generation) 15)

Now we are ready to customize these concepts for our model. Suppose that agent i in the
communication network is active. Let D > 0 be the width of the current decision interval,

[t,t + A). Let Uy(p, t), p € M be the unsatisfied demand at the beginning of the interval.
Agent i has a set of primitive actions:

[Vi,j |j = 1,0, Vi,jlp e TM,, foreachpe M] (16)

During the interval, [t, t+ A), agent i schedules one or more of these actions and determines the
fraction, ai,j(p’t), of D that action V;; must be executed, as a function of the current service
request, S_.(t,p), and the demand of the active agents in the logic communication network,
D(p,t)= [Dl(p,t), S DN(t)(p,t)]. Figure 4 illustrates a schedule of actions involving three
primitives. We will use this example as means for describing the derivation of our model.

Flow associated with actions
of agent i

| \ L Vins
p') /

v

t t+A

A, = o, G)A A, =a,0)A A =e,0)A

Lot .

< A >

Figure 4. Conceptual illustration of agent action schedule

The flow ¥, associated with the schedule of Figure 4 can be computed from the flows associated
with each of the actions:

Y, (Lpift St <t+A,
2(1.', ¥, (t+ A, p)) if t+ A, ST<t+A, +4,, (17

b 4 (t, ‘Pvm (t +A AL ‘Pvm (t +Aia, p))) if

Ving

¥.(t,p) =¥

Vin

t +Ai,n] +A,.,“2 T <t +Ai.n, +Ai.n2 +Am3

10

with A, + A, + A, =Aando, +0o, +0a, = l

3

We note that the flow ¥, , given by (10), characterizes the evolution of the process as viewed by

agent i. The vector field Vilp associated with the flow ‘P, is obtained by differentiation and the
third identity in (15). This vector field, applied at p, is proportional to:

vilp = [Vi.nl’ [Vi.nz’ vi.n;]] (18)

Where [.,.] is the Lie bracket defined as follows: Let v, w, be derivations on M and let f be any
real valued, smooth function f : M — R then the Lie bracket of v, w is the derivation defined by:

[v,w] (f) = v(w(f)) - w(v(f)) [11].

The composite action vilp generated by the ith agent to control the process is a composition of the

form of (11). Moreover, from a version of the Chattering lemma and duality [12], we can show
that this action can be expressed as a linear combination of the primitive actions available to the
agent:

[vi,nl’ [vi.nz’ vi.n;]] = EYIJ((X) vi'j
]
v =1

j

(19)

with the coefficients ' determined by the fraction of time &, ;(p,t) that each primitive action vy is
used by agent i.

The effect of the field defined by the composite action vi‘p on any smooth function (equivalent
function class) is computed by expanding the right hand side of (10) in a Taylor series (Lie-Taylor
[11]). In particular, we can express the evolution of the unsatisfied demand C; over the interval
[t, t+ A), starting at point p by:

Ci(t+ A, p") = Cit, ¥(t+ A, p)) (20)

Expanding the right-hand side of (20) in a Lie Taylor series around (p, t), we obtain,

Ci(t+ A, p")= Z(Vi|p(C?(p,t))) N

j j!

((v1)"0) | @

with

(Vi|p('))j =Y

and

(vi| P)o ()= Identity operator

11

In general, the right side of (14) will have countable, non-zero, number of terms. In our case, this
series will have finitely many non zero terms. This is so, because in computing powers of
derivations (i.e., limits of differences) we need to distinguish among different neighboring points.
In our formulation of the topology of M, this can only be imposed by the clausal information.
Since each agent's knowledge base has only finitely many clauses, there is a term in the expansion
of the series in which the power of the derivation goes to zero.

2.2 Desired qualitative and quantitative closeness constraints of the closed-loop
system

Detailed models of enterprise-wide processes of the kind mentioned above necessarily include both
qualitative and quantitative constraints. For example consider the problem of integrating high-level
scheduling of manufacturing production of a factory and low-level execution of manufacturing
processes within a work cell of the factory:

. Qualitative characteristics and logical constraints: The scheduler for a factory
must produce the schedule by evaluating throughput, tardiness, work-in-
progress, machine wear, and other metrics. Each of these input-output criteria’
can be measured as a number. These numbers are global criteria (apply to the
factory as a whole), and, since the criteria are not associated with a particular
step in the manufacturing process, treat the factory as a black box (i.e. to be
analyzed by input-output considerations). Other metrics are associated with
quality of product which may be based on appearance, density, texture,
thickness or some other variable which can be sensed, approximated by an
allowable range of values, and used to create an event-based switching function
for altering production quantity and flow through the factory.

. Quantitative characteristics and continuum constraints: Contrast this with the
problem of deciding what to do next at an individual work cell. The logical
decisions discussed above, normally captured as events occurring at instants in
time, above must be compatible with the laws of physics which govern the
continuous operation of motors, conveyor belts, sensors, actuators and so
forth.

Further consider the problem of centralized control of the factory floor. If the factory is equipped
with a single supercomputer and a very fast, unfailing sensor environment, then one program can
be tasked with deciding for every work cell what it should do next, in complete detail. If
communication lines to that computer fail, the factory stops. If its sensors lie, the factory may not
stop, which can be worse. If simultaneous events overload the supercomputer, everyone waits. If
small amounts of another product need to be produced between production runs of the current
product, the plant must be reconfigured.

These considerations argue for a multiple-agent approach with coordination among work cells to
achieve reasonable performance. While a high degree of autonomy among agents is needed to
support a "divide-and-conquer" approach to meeting the complexity of producing workable plant
schedules, it is possible for one controller to degrade factory performance by shuffling parts
between two orders in a looping fashion, causing downstream workcells undue overhead in
reconfiguring. Distribution of control is needed, so that work cells can make autonomous
decisions, using advice from neighboring work cells, and performance criteria (goals) from a
factory-wide goal-setting agent. Factory plans are made by considering certain constraints,
normally in the context of a nominal manufacturing scenario. However, factory execution occurs
in the context of actual decisions and events, which can deviate from the nominal scenario. Ina
general sense this is true for any application that spans the boundary between planning, where
limited experimentation can be conducted, and situated activity, which has a much larger set of
possible outcomes. The concept of an agent must appear on both sides of this boundary.

12

Multiple-agent, declarative control provides a path to substantially contribute to analysis and
resolution of factory planning, scheduling and control.

2.3 Generation of programs (automata) to force closed-loop compliance with
system constraints.

2.3.1 Bellman's optimality principle: A state-space oriented assertion of Bellman's
optimality principle is that an optimal policy has the property that whatever the initial state and the
initial decision are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision. For hybrid systems, application of this principle leads to the
Hamilton, Jacobi, Bellman (HJB) relaxed variational form [37]:

V,(Y,7) = inf, [L.(¥(z, Y),v,|,(Gi(7 p))- dai(p, d7)

av. av.
Y —inf H(Y, —, «,
P (oY)
(22)
Yt)=p
Te(t t+ A)

Where p is a point in the carrier manifold, Vj are tangent vectors at each point and aj are
coefficients of the tangent vectors. Closed form solutions for this equation were previously only
known for linear systems with quadratic costs where the solution of the HIB equation is achieved
by solving the associated Riccatti equation.

13

Agent BEHAVIOR TRAJECTORY

Behavior A

Trajectory
v6

vs Action iy

v4 / Action ip

:; .-,Z____ Action i3

T BN > [Action i4

A@ t+A Action i 5

B4 f\ction ig

Figure 5. Agent i behavior as a chattering combination of infinitesimal actions
2.3.2 Kohn-Nerode-James optimality result:

Consider vector fields in the tangent bundle of infinitesimal actions (see Figure 5) and the tangent
at point x in the carrier manifold.

What happens when moving to point x + Dx?

In ordinary calculus we would use the directional derivative to answer the question. In the
mathematics of manifolds, the Levi Civita theorem providés a mechanism for connecting the
tangent at x to the tangent at x + Dx.

In the Kohn-Nerode formulation for hybrid systems, there is no distance metric but there is a
concept of closeness based on the Kohn-Nerode definition of continuity for hybrid systems. The
application of the definition of continuity leads to the construction of the HJB equation and its
solution as the chattering combination of infinitesimal control actions (Figure 5).

The appropriate interpretation of this solution is that the coefficients of the tangent vectors satisfy
the Levi Civita continuation equation (affine connection) from x to x + Dx and coincides with the
HJB equation from x to x + Dx.

The revolutionary consequence of this result is that the Bellman Optimality Principle is the
consequence of continuation in the hybrid systems formulation. The effect is that instead of having

the previous limited result for linear systems that if a solution exists, then the LQ or H result is
exact, we can now use infinitesimal actions to both define the choices available, and then construct
the HIB equation to be solved, secure in the knowledge that the TO topology of hybrid systems
tends to the Hausdorf topology in the limit [see 37 for a proof]. The result is summarized below:

14

We note that both actions and disturbances are transformations on points in the carrier manifold.
Each infinitesimal action or disturbance is represented as a derivation on M as discussed above.
We construct an inference automaton which is the epsilon-optimal hybrid controller (D
approximation). The evolution equations are:

Qs = 5(q,, o,,, A) neighborhood transition
D ea solution of current equational terms
23
v| () =8(a) infinitesimal action)
u,, = EXP(A . v| q)(H(X, g)) current control law
The logic equations are:

Y, =E(q,)* Y, + K(q,) Kleene-Schutzenberger Equation

resolution of current relations (24)

@, .4 =S(Y,) Selector function

3. Discussion of MAHCA relative to other enterprise-wide architectures:

3.1. An overview of MAHCA : MAHCA supports elimination of the current ad hoc
approach for integration and evolution of heterogeneous components of large-scale systems by
providing a rigérous methodology, reference architecture, and (preliminary) tools for incremental
construction of large-scale systems. MAHCA applies a hierarchical organization of enterprise-
wide infrastructure (similar to the ISO layered network model), and a logic distribution of control
agents controlling these processes.

3.1.1 Hierarchical organization of enterprise-wide applications:
For the manufacturing case, the need is to organize the infrastructure for factory planning,

scheduling and control (PSC). MAHCA uses a layered architecture (Figure 6) to implement the
control of enterprise-wide processes.

Intelligent PSC Controller
Multimedia Database System
Network Controller & Scheduler
Inter-Networking

Physical Communications Network

Figure 6. Hierarchical Organization of Enterprise-Wide Infrastructure

15

Global Goal Data to

(if boundary node) Connected

Actions Agents

Theorem

Inferencer

Data from
Connected

Agents ._+ Knowledge
Decoder

Local Knowledge
Sensors Base

Local »
-

Global
Data

Hﬁ Jl Adapter |<

Figure 7. Control Agent

3.1.2. Logic distribution of agents:

The PSC agent network is composed of a (varying) number of devices called Control Agents
(Figure 7) implicitly coordinated through a variable (over time) configuration Network of Control
Agents (Figures 8) implemented through the hierarchy of Figure 6. In order to accommodate the
reliable provision of control of the flow of products and partial products through the manufacturing
workcells, we intend that the network be controlled by a network of autonomous agents, the PSC
agent network. The fundamental (global) goal of the PSC network is to resolve unsatisfied
demand between producers and consumers. Conservation of unsatisfied demand is the primary
logic condition for synchronization of the agents in the PSC network. Control of the network is
implicit without umpire since synchronization is effected through sharing of constraints between
agents. The inter-agent communication network's main function is to transfer inter-agent
constraints among agents according to a protocol written in equational Horn clause language.
These constraints include application dependent data and, most importantly, inter-agent
synchronization. The inter-agent synchronization strategy is very simple. An agent (Figure 7) is
synchronous with respect to the network (Figure 8) if its inter-agent constraint multiplier is
continuous with respect to the current instance of its active knowledge. Since the equational Horn
clause format allows for the effective test of continuity (which is implicitly carried out by the
inferencer in the Knowledge Decoder), a failure in the Knowledge Decoder theorem results in a
corrective action toward re-establishing continuity with respect to the topology defined by the
current instance of the knowledge base (see [7, 8, 9, 10]). As mentioned in the introduction,
structural adaptation is accomplished by the modification of the logic clauses, according to a set of
modification rules, or by the creation or deletion of agents in the network. A significant
consequence of this structural adaptation approach is the ability to support on-line modificationof a
hierarchical partitioning of the manufacturing process such that, from the highest level of
abstraction, decomposition of manufacturing tasks into a continuum hierarchy is supported.

. . Declarative Controller Agent

_> Communication Path

@ Boundary Controller Agent

16

Figure 8. Network of Cooperating Control Agents

The specification of the geometry of the network, as a function of time, is dictated primarily by
global observability. By global observability we mean closure of the knowledge of the system as
whole relative to the scope the systems reactivity.

3.1.3 Architecture capabilities:

The multiple agent hybrid declarative control architecture exhibits several key capabilities, for the
implementation of high-safety, high-assurance systems. We list some of them next.

Reactivity: The theorem proving function of each agent on the architecture operates according to a
first principles feedback paradigm. This property extends the feedback principles to the decision
levels in the manufacturing process, which allows for a status-dependent tuning of their actions.

Adaptivity: The knowledge base of each agent is open and modifiable by sensory data. Theorem
failure triggers tuning and corrective action. This property maintains the validity of the knowledge
base of the agents and is the basic mechanism in the feedback paradigm discussed above.

Distributive with Coordination: The theorem proving is carried out distributively over the agents.
The coordination scheme is implicit without umpire. This property is central for ensuring that
although each agent controls a local aspect of an enterprise, the global logic integrity of the system
is maintained over time.

Dynamic Hierarchization: The architecture can operate simultaneously at different levels of
abstraction. The Knowledge elements that characterize an enterprise are naturally distributed over
many levels of abstraction. The characteristics of these levels are a function of process status.
Therefore, in order for the agent controllers to maximize the use of the available knowledge its
hierarchization must be tuned to current status.

Figure of Merit: The behavior of the closed loop distributive system is determined by proving that
there exists a command trajectory that minimizes a goal functional. The selection of this functional
depends both on short and long term agent objectives which again depend on current status.

Real-Time: Constraints for real-time performance are explicit and part of the knowledge base. This
is important because in a complex real-time environment, the timing of normal or unexpected
events is strongly correlated with the status of the process and therefore the structure of the real-
time constraints cannot be fully instantiated at design time. MAHCA supports adaptive
optimization of large-scale sytems through on-line solution of a nonlinear HJB equation which is
then used for program generation.

The central mechanism for providing these capabilities is an on-line restrictive mechanical theorem
prover within each agent . The architecture consists of a Knowledge Base which stores the goal
for the agent, system constraints, inputs and inference operations. A Planner generates the
theorem which represents goal. For some agents, this goal will govern the behavior local to that
agent. For other agents, the goal will also include behaviors global to the system. The Inferencer
proves the theorem. If the theorem is true, control actions, computed during inferencing, are
issued to the plant. If the theorem is false, an Adapter processes the failed terms in the theorem for
replacement or modification. Data from other agents is provided to the Planner for incorporation as
constraints into the theorem and passes through a Knowledge Decoder for entry into the
Knowledge Base. We provide the following summary of results for the multiple-agent hybrid

control architecture (MAHCA)
1. MAHCA supports construction of a precise statement of the enterprise control problem in
terms of multiple agent hybrid declarative control. Our approach characterizes the problem

17

via a knowledge base of equational rules that describes the dynamics, constraints and
requirements of the processes being controlled (channels, switching modes, customer
characteristics, scheduling and planning strategies, etc.).

2. We have developed a canonical representation of interacting networks of controllers. Given
a connectivity graph with N nodes (controllers) and the corresponding agent's knowledge
bases, a network of 2N agents can be constructed with the same input-output
characteristics, so that each agent interacts only with another (equivalent) companion agent,
whose knowledge base is an abstraction of the knowledge in the network as viewed by the
agent. Thus, in general, the multiple-agent controller for any network configuration is
reduced to a set of agent pairs comprised of an agent and its companion.

3. One agent of each pair, the Companion Agent, coordinates with other agent pairs across the
network. The proof carried out by the Companion Agent generates, as a side effect,
coordination rules that define what and how often to communicate with other agents. The
coordination rules also define what the controller needs from the agent network to satisfy
control requirements of its physical layer.

4. Our approach is based on a canonical procedure to prove a special class of existentially
quantified theorems whose statement characterizes the desired behavior of a manufacturing
PSC process, a state trajectory of the process that satisfies requirements in which the agent
is involved. The procedure proves the theorem, with respect to the current knowledge base
status, by constructing and executing -on-line a finite state machine called the "proof
automaton." The output function of this automaton generates the control actions the agent

v uses to control the aspects of the process in which it is involved.

5. In the Multiple-Agent Hybrid Control Architecture (MAHCA), the agent execution schema
has linear complexity in the number of relational terms and the number of variables.

6. The Bellman Optimality Principle is the consequence of continuation in the hybrid systems
formulation. The effect is that instead of having the previous limited result for linear
systems that, if a solution exists, then the LQ result is exact, we can now use infinitesimals
to both define the choices available, and then construct the HIB equation to be solved,
secure in the knowledge that the TO topology of hybrid systems tends to the Hausdorf
topology in the limit.

This is the basis for generating procedures to interface heterogeneous components of the
manufacturing process, and for our belief that the resulting architecture will support incremental
expansion of new components with greatly reduced requirements for expensive experimentation
validation. We do not expect to fully eliminate the need for experimentation because the degree of
"trust" in the newly composed architecture will depend on the rules for composition of the
components. However, to the degree that the composition rules are correct, the methodology will
be a formally correct composition of the components, the focus of the verification and validation
effort will be raised to the component level and the results will be reusable across the confederation
of components.

How the existing hybrid systems unification mechanism works: We have been
developing single-agent and multiple-agent demonstrations of extracting global and local control
programs. The technology and the demonstrations have been developed under sponsorship from
the Army Research Office (ARO), the Ballistic Missile Defense Office, Army Armaments
Research, Development and Engineering Center (ARDEC) and Department of Defense Advanced
Research Projects Agency (ARPA) [7, 9, 211.The sequence of steps leading to generation of
programs which comply with the current specifications and parameter values are:

1. The original problem is reformulated as a calculus of variations problem on a carrier
manifold of system states. The carrier manifold is the combined simulation model of the
network and the simulation models at the nodes, a manifold on which the (evolution of)
state trajectories occur. We are to find control functions of the state of the system for the
global and local problems which minimize a non-negative cost function on state trajectories
whose minimization perfectly achieves all the required goals of the ADS.

18

2. One replaces the variational problem with a convex problem by convexifying, with respect
to u, the state rate, the Lagrangian L(x,u) which is being minimized. The convexified
problem has a solution which is a measure-valued (weak, or L. C. Young) solution to the
original problem. This is a chattering control which chatters appropriately between local
minima of the original problem so as to achieve close to the global minimum of the original
problem. This solution, however, is only abstract and gives local and global control
functions of time.

3. To get control functions of state instead, we convert the convexified problem to the
appropriate Hamilton-Jacobi-Bellman equation form. An 'e-solution' of this equation for
the appropriate boundary conditions, gives valid infinitesimal transformations on the state
space representing the generators of feedback controls, i.e., control functions of state, not
time, the solutions dual to the original ones. The weak solution obtained is approximated to
by global and local "chattering control" programs.

4. The controls that are possible at a given state are a cone in the tangent plane, and move with .
the tangent plane. If one follows the optimal control as one moves in state, the near optimal
controls needed are algebraically represented by the Christoffel symbols of an affine
connection, a recent result of Kohn-Nerode-James [37]. The Christoffel symbol
representation gives the real-time computation of the global and local automata, or control
programs, needed to govern the communications network and the approximations at nodes
in order to meet the prescribed goal. The global program takes responsibility for message

. passing between nodes, the local programs take responsibility for local updates in real time.
Required dynamics of the global system is achieved without central control (umpire) for the
distributed system through enforcing global continuity conditions at each node.

To our knowledge, the Kohn-Nerode approach to hybrid systems is the only theory to both (1)
provide a solid mathematical foundation to unify logical and evolution models and (2) be
computationally feasible. The methodology, while promising, is very new and extensive research
is required to understand both the most effective ways to construct the unified models and to build
the necessary interfaces to existing systems. The rapid acceptance of the theory by major research
institutions attests to its relevance to fundamental issues in several disciplines.

3.2 Comparison of MAHCA to other architectures:
3.2.1 Discussion of NASREM: '

For over twelve years the National Institute of Standards and Technology (NIST) has sponsored a
series of improvements in achieving a reference architecture for distributed intelligent control
systems. The hierarchical control system developed for the Automated Manufacturing Research
Facility at the National Bureau of standards [1] was developed as an architecture for machine shop
control and subsequently used for control of multiple autonomous undersea vehicles and battie
management [3, page 1]. The NASA/NBS Standard Reference Model for Telerobotic Control
System Architecture (NASREM) (see [3,4] and Figure 9) has been a valuable reference architecture
for a variety of distributed, real-time systems.

19

SENSORY WORLD TASK

PROCESSING MODELING DECOMPOSITION
MODEL PLAN
INIT)'EEE&TFE EVALUATE EXECUTE
GOAL*
G P M, —» H SERVICE
GLOBAL s —{_ _° |MISSION
MEMORY | & | [4
1
Gy Ms [1 Hs |seRvice
' 1 A | I ‘ BAY
I o
G |a— M e " |rask
MAPS I I’ I I +
OBJECT LISTS e
STATE VARIABLES G |2 M 1 H emove OPERATOR
EVALUATION FCNS ’ 4 INTERFACE
PROGRAM FILES 1|
o >
2’ —— M e H, PRIMITIVE
; +
G, M, =™ H COORDINATE
- - ~—ITRANSFORM
[& | SERVO
~ SELSE ACTION

Figure 9. NASREM: A hierarchical reference architecture for control of telerpbots

NASREM was created to be used as a guideline for the development of the control system
architecture of the Flight Telerobotic Servicer for the Space Station. NASREM is currently the
reference architecture for a number of research activities, including experiments in mobile robotics
at the US Army Armaments Research, Development and Engineering Center (ARDEC) and in
command and control architectures for the Advanced Research Projects Agency (ARPA).
Furthermore, NASREM was conceived to support life-cycle activities in construction and
maintenance of large-scale, real-time systems [3]:

The NASREM telerobot control system architecture defines a set of standard
modules and interfaces which facilitate software design, development, validation,
and test, and make possible the integration of telerobotics software from a wide
variety of sources. Standard interfaces also provide the software hooks necessary
to incrementally upgrade future Flight Telerobot Systems as new capabilities
develop in computer science, robotics, and autonomous system control.

However, a strict adherence to a layered architecture like the NASREM architecture is known to
have occasional problems with stability for lower-level control components and with logical
inconsistency for higher-level planning components, leading to a need for conducting extensive
experiments to discover and compensate for failure modes of the system. The multiple agent
hybrid control architecture (MAHCA) provides the flexible structure and mathematical rigor
required to resolve these known problems with stability and logical inconsistency while enhancing
the existing NASREM capabilities for:
+ incremental construction,

20

+ integration of heterogeneous components,

« collaboration among diverse disciplines (multiple views),

« verification, validation and accreditation (commissioning), and

« accommodation of new technologies.
The problem with stability for control systems is related to the issue of knowing when to make a
decision (execute a control action) for affecting a controlled value (desired result) at some time in
the future. At the lowest layers in the hierarchy (See Figure 10), the time required to execute a
commanded action (control law) is normally quite small (on the order of microseconds or
milliseconds) while at the highest layers in a complex system, it might be hours or days.

- Sense Model Act

Layer n

Layern-1

Layer 2

Layer 1

Figure 10. Layered Architecture with fixed hierarchy of layers

The normal implementation decision is to partition the operating conditions of the system into well-
understood modes for which adequate low-level controls are designed. Higher-level decisions,
which occur at much slower time scales, then occasionally initiate switching between operating
modes (such as start-up, shut-down or normal-operation). This is reflected in the order-of-
magnitude differences in output rates between each layer of NASREM (see Table 1) and
corresponding longer planning horizons and average replanning intervals. '

For small-scale systems and for systems which change very slowly over time, this approach has
worked well for decades, since an ad hoc mixture of components can be experimentally tested with
a high-enough assurance that catastrophic failure modes have been discovered and adequately
addressed. However, for larger-scale distributed systems and for systems which change more
rapidly, there is not enough time and/or resources to adequately execute sufficient experiments for
verification, validation and accreditation (commissioning) of the system.

Layer Average rate of Average Planning
change in output |replanning interval horizon

21

Servo 1000 Hz 2 milliseconds 15 milliseconds
Primitive 100 Hz 30 milliseconds 300 milliseconds
E-Move 10 Hz 200 milliseconds 2 seconds

Object/Task 1 Hz 3 seconds 30 seconds
Service Bay 0.1 Hz 1 second > 10 minutes
Mission 0.01 Hz 6 minutes > 1 hour

Table 1. NASREM timing relationships between and within hierarchical layers

Layers

"\
n-1\

/
/

> Time

Figure 11. Time delay associated with fixed hierarchy

This has serious implications for system stability since the difficulty occurs when logical decisions
at higher levels are allowed to affect parameters which determine stability of low-level components.
In that case, the time delay associated with different layers in the hierarchy (See Figure 11) means
that accurate predictions of system behavior are needed to be made farther in the past for current
actions to be correct. For linear models it is easy to see that sufficient time lag can be easily
introduced to cause phase margins for system stability to be exceeded. These conflicts can be
predicted by closed-form solution of the linear models and adequately addressed in the system
implementation. However, since linear models only occur for small perturbations around
equilibrium operating conditions for different modes, it is not possible to accurately predict system
behavior without conducting sufficient experiments for an allowable range of parameter values. A
similar problem is present in the case of lower-level events causing changes in logical consistency
of higher-level plans. What is needed is a rigorous methodology for enabling the occasional event
at higher levels in a hierarchy to directly affect (without time lag) the actions(s) at an appropriate
lower level and for the occasional event which occur at lower levels in the hierarchy to directly
affect (without time lag) the plans and decisions at the appropriate higher level. Hybrid systems
theory provides that methodology and we have designed MAHCA as a reference architecture based
on the methodology.

22

MAHCA supports establishment of a distributed team of cooperating reasoning agents connected in
a possibly time-varying logic network. The domain of expertise of each agent is represented in its
stored knowledge and the knowledge that flows to it from its sensory inputs and other agents. This
knowledge encodes information of the characteristics of a particular manufacturing process in
execution as it relates to desired quality of service or manufacturing performance metric behavior
and also to a possibly time varying goal. The function of each agent is to infer from the stored
knowledge, and the actual data (sensory information and partial resolutions coming from the other
agents) a combined resolution that instantiates a model, resolving the goal. This model and the
extraction process satisfy pre-established QOS or performance metrics. Prototype software to
implement the extraction process currently exists and projects to demonstrate both single and

- multiple-agent applications of the extraction process are being supported by the Army and the

Defense Advanced Research Projects Agency. MAHCA has been shown to be capable of
synchronizing events and continuum values (maintaining stable operation) across a broad range of
time scales and we have developed preliminary concepts for syachronizing semantic agreement
between plans and implementations (maintaining consistent views) across a broad range of
disciplines. _

Lie algebra results concerning infinitesimal operators on smooth functions allow us to consider all
the standard evolution models of differential operators and DEDS evolution models. We embed
logical models in continuous models in order to construct automata which comply with logical and
continuum constraints. The data flow model of points in the carrier manifold (corresponding to
single-agent control implementation) is given in Figure 12. We assert and emphasize here that for
systems which meet the conditions for creation of a hybrid system state, the revolutionary nature of
our approach has two benefits:
« Creation of a unified mathematical foundation for analysis and synthesis of models which
for decades have been treated separately, and
« Creation of a rigorous process for incremental expansion of trusted systems which must
comply with stringent safety and performance constraints.

3.2.2 Discussion of Advanced Research Projects Agency (ARPA) Domain-
Specific Software Architectures (DSSA) program:

The architectural ideas upon which MAHCA is based are derived in large part from the excellent
results available from previous DSSA efforts to begin programming by components. Indeed,
development of MAHCA has been partially funded by the ARPA DSSA program. The overall
objectives of the DSSA program are stated in [39]. These ideas include construction of
component-based domain models, creation of reference architectures, use of architecture
description languages, and cost reduction through software reuse.

23

Logicat
&

Evoiution
Modeis

In Number
of Terms

Noemal
Reactive
Loop

@ Infar ace O perstors : S tatus I

Figure 12. Data Flow Model of Points in the Carrier Manifold

As developed early in the DSSA program, one definition of a DSSA is that it is: an assemblage of
software components,
» specialized for a particular type of task (domain),
» generalized for effective use across that domain,
« composed in a standardized structure (topology) effective for building successful
applications in the domain.

Component-Based Domain Models: The DSSA program defines a domain model as the
terminology and semantics characterizing elements and relationships in a domain. The domain
model defines the terms used to express requirements and evaluate systems. Models used to build
DSSAs suffer from the fact that there is a split in the enabling fundamental technologies used to
create and compose the models. As indicated in the DSSA Guidelines report:

Domain modeling needs to address both the system and its environment. Often a system is
composed of many ingredients, only a fraction of these being software. The domain model
must address all aspects of the system performance in the environment that will affect the
requirements for or constraints on the software. An excellent domain model should allow us
to determine whether a system as designed will meet the objectives of the system as
required. Synthetic environments which simulate the designed system in its operational
context can provide this type of capability [44].

A basic motivation behind the DSSA program is to lower costs of integration of future systems by
providing a structure (the architecture) and a process (guidelines for developing and applying the

architecture) within a narrow application area (the domain) in order to reduce the costs of
integration of future systems. While the idea of the DSSA guidelines to have an all-inclusive

GOPY AVAILABLE TO DTIC DOES NOT PERMIT FULLY LEGIBLE REPRODUCTION

24 N

model is a desirable goal, the diversity of models used to capture different portions of
environments is a barrier to cost-effective achievement of combined models (See Figure 13 [43]).

The split in models carries beyond those usually associated with real-time control and is a
pervasive situation for DoD systems. The Defense Science Board task force focused on tools and
technologies for Distributed Interactive Simulation (DIS). Figure 13 shows the dependence of
each layer of DIS implementation on two foundational kinds of models: (1) human behavior
representation models of cognitive behavior and (2) environmental representation models of the
physical environment.

DoD-Driven M&S Technology Examples*

LEVEL 3

+ CIM Process Planning

« Stability and Control

« Human Factors

MANUFACTURING PROCESS | [ENGINEERING DESIGN] [~ MANNED STOCHASTIC | SAFOR
SIMULATIONS MODELS & SIMULATIONS SIMULATORS WARGAMING
+ FMS/Automated Assembly « StructuralFluid Dynamics ‘» Training + Training + Training
+ Material Mgmt -JIiT inventory « Finite Element Anaisis + Combat Dev. . ﬁ;nbclu r|>;v. + Combst
i orical Rev.

Dev.

LEVEL 2
[INSTRUMENTED RANGE SYSTEMS | [DoDDATABASES| [DoD PROTOCOLS/STANDARDS/SECURITY |

« Subsistent TES Systems T « Protocol Standards & interoperability
« intelligence Data
+ Electronic Combat Data

+ Embedded Systems « Muitilevel Security
+ Virtual/Reai World Interfaces « End-to-End Encription Technologies

LEVEL 1
INSTRUMENTATION

« Terrain Data Base Generation - Position/Ori jon T d s
e e iAol
- Validation & Verification e oy howa Dispiay

LEVEL 0 , :

HUMAN BEHAVIOR REPRESENTATION MODELS ENVIRONMENTAL REPRESENTATION MODELS |

« Cognitive Behavior Research + Weasther/Atmopheric Effects
o Mit Doctrine Research + Eloctr gnetic | {
+ Human Factors Research + Dy ic Terrain Rep

Figure 13. Examples of Diversity of Models

These models use fundamentally different mathematical tools. Cognitive models are built using

‘linguistic (in the Computer Science sense) tools which depend on the set-based mathematics of

algebraic topology. Models of the physical environment are built using simulation tools which
support experiments with compositions of set-based, linguistic (logical) models and continuum-
based models which depend on the mathematics of differential operators (normed vector spaces for
systems of linear differential equations). Experiments are necessary to determine the-behavior of
the composition of models for safety, reliability and performance constraints. These models are
subsequently used to build progressively more complex-systems at higher levels of integration until
ultimately they are used in requirements definition, prototyping, program planning, design and
manufacturing, training and readiness; and test and evaluation.

25

We are convinced that the key contribution of hybrid systems theory to component-based
programming is the creation of domain models which can be more easily integrated. Easing the
integration process is a key contribution because the current process is fundamentally limited
by the fact that the approach for integration of diverse models is to apply engineering experience
and heuristics to combine diverse models and then to exhaustively experiment with alternative
parameter values or structural adaptations until satisfied with the result. While progressively more
effective methods for disciplining the process and checking on the results have been developed, the
experimental nature of the approach has not changed substantially in several decades. Establishing
a more disciplined component-based software engineering process and creating tools and
organizations to implement that process will substantially lower the costs of integration of complex
systems. However, hybrid systems theory is a path to provide the software engineering process
with a fundamentally new means to formally define and construct compositions of diverse models,
reducing or eliminating the need for exhaustive experimentation. This situation is especially
promising for integration of real-time systems into larger information systems.

Software Reuse: One of the useful results from the Domain-Specific Software Architectures
(DSSA) program has been a high-level concept for the relationships between domain management,
domain engineering, the problem space of domain engineering and the solution space of application
development (see Figure 14).

Domain Analysis supports a product-line approach for delivery of software products (solution space)

Domain Management

Domain Problem Space \

Engineering

‘‘‘‘‘

sssss -

.....

R
] L]
\ Software Domain .
s zml.ls‘ils . DM:.:H o : Software #P1Component/
aly e ‘ Development) Architectures |Generator

Development

Reusable
Components ,
and/or .
ge!eraulrs‘ Ny

Application
Development R L T AR
User Analysis « Application * |Software .
Requil'ellmns-'> Based on Performance (g System * Software
Domain + Specification . {Design Based[” ' Architecture ,
Model Caapgp « < |ooDomain L

Architecture

Vet www e w -

AALAARRRRARRN dAl LR RN L

v y

Feedback from DSSA solution space process steps supports spiral improvement
in product-line artifacts of DSSA problem space

Figure 14. Use of Domain Analysis Products to Support Application Development

The problem space contains information delineating what is to be done to resolve problems
encountered in the domain without defining how to do it. The how is the purview of application

26

development. Domain Engineering is the conduct of activities related to understanding the problem
space and include:
« Domain Analysis: Identification, analysis, and development of a domain model.
o+ Software Architecture Development: Development of the Domain-Specific Software
Architecture (Reference Architecture)
« Composition of Reusable Components or Component Generation

Products of Domain Engineering of the problem space include:

« Domain Model: Identifies entity classes, inter-entity relationships, and operations on entities,
which are common to most systems in a given specific domain.

« Domain-Specific Software Architecture (Reference Architecture): A structural model
representing a high-level design packaging of functions, their relations and control, for a
family of related systems, with underlying reusable components designed to work together
to support the implementation of applications in the domain.

« Domain Implementation (Reusable Objects): To construct robust, reliable source code which
can be used to configure and adapt DSSAs to meet specific system requirements (reusable
components Or component generators). ‘

While domain engineering concentrates on the development of the above products, the utility of the
products of domain analysis rests upon the extent to which they are used in the application
development process. These activities occur in the Solution Space: and comprise the delineation of
how to resolve a problem (application development):

« Analysis of user requirements based on the domain model,

+ Software System Design based on the domain reference architecture, and

« Application Software Development based on composition of reusable components or

component generation.

Products of the application development process in the solution space include:
« Application Performance Specification: Developed using the Domain Model
o Application Software Architecture: The instantiation of the DSSA (Reference Architecture)
for the problem at hand.
« Application Software: Application of Domain Implementation products

Thus, domain models are used in the requirements analysis phase of application development to
produce application performance specifications. Likewise, DSSAs (reference architectures) are
used in the design phase to develop application specific architectures and reusable components are
used in the development phase to produce the target application. Domain management is the
responsibility of the functional proponent for the domain. Figure 14 is a modification of a slide
used by John Leary at a DSSA meeting and summarizes many of these ideas..

It is important to note that the domain engineering and application engineering processes are seen
as repetitive with incremental improvement being achieved through progressively more accurate
prototypes. Concurrent feedback supports spiral development and the Domain Engineer and
Application Engineer coexist in an environment supported by a reuse repository or library. The
levels and types of support provided can vary from a customized reuse environment supporting a
vertical domain to a repository supporting many domains in a rather generic unintegrated manner.
The Department of Defense has recently initiated an integration of several repositories. In addition,
the Reuse Library Interoperability Group (RIG) has produced several documents to facilitate
construction of open-architecture repositories. The RIG has also recently published a uniform data
model for reuse libraries [45] and a report on measuring the interoperability of reuse libraries [46].

27

Reference Architectures: The DSSA program has defined a reference architecture as a
software architecture for a family of applications in a domain. The program defines a software
architecture as an abstract system specification consisting primarily of functional components
described in terms of their behaviors and interfaces and component-component interconnections.
The interconnections provide means by which components interact.

DSSA projects have developed reference architectures for avionics [40], vehicles [41], and
guidance, navigation, and control [42]. We will next discuss architecture work in each of these
areas .

3.2.2.1 Discussion of Teknowledge DSSA architecture: The Teknowledge approach
to architecture development and application is to view the DSSA products in terms of three basic
levels of systems where (1) the domain architect uses the Domain Development Environment to
produce the reference architecture, components and development tools which comprise the
Domain-Specific Application Development Environment to be used (2) by the application engineer
to produce an architecture instantiation which is used (3) by the operator as the Application
Execution Environment.

The Cimflex/Teknowledge team is integrating ABE, BB1 and their Requirements Manager to form
an Application Development Support Environment (ADSE). Cimflex Teknowledge is working to
assimilate intelligent/hybrid control into their Distributed Intelligent Control and Management
(DICAM) architecture. The development of a partitioned hierarchy as a modified version of Albus’
architecture for computer-controlled systems is seen as desirable. The sequence of development is
seen as: representation, specification, compilation, and implementation. The hierarchical DICAM
Reference Architecture is composed of (1) an information base and world model which uses a
variety of knowledge representation techniques to capture information on the past, present and
future of the different levels of the system and (2) a hierarchical network of semi-autonomous
individual controllers. The Individual Controller Reference Architecture is shown in Figure 15.

Stanford University is working with Teknowledge to implement Intelligent Control From the
Bottom Up. The position is that the higher-level decisions depend upon proper operation of the
low-level controllers. Stanford has provided a discussion of the development of real-time
controllers and the evolution of adaptive control into he field of intelligent control. Plans are for
intelligent control to involve the on-line redesign of the control law based on an update of the plant
model (on-line identification of system dynamics). The eventual result will be implementing
intelligent real-time adaptive control within the DICAM architecture.

The Teknowledge-Stanford team has identified which portions of Figure 15 would perform the
required functions for implementing an intelligent controller:

A real-time path from sensors, to input filters, plan executor, and effectors which reside in
the Domain Controller,

System identification and control design functions which reside in the situation assessment,
planner, assumption analyzer, local world model, and plan cache in the Domain Controller,

Identification and Control Design Assistants which reside in the Meta-Controller, and

Design Specifications and Modeling Information Database which are a component of the
DICAM Information Base & World Model.

28

e —————— N
Domain Controller Goals from Superiors Messages to Superiors
Messages
to and from Planner/
18/wM ~——("Local World Replanner
Model
—#1 Sensors Critical Effectors
ssumption
Analyzer /
[Messages 1 = Messages
from —] F?np |y, | Situatlon —> to
Siblings "'s\ ssessment] Siblings
Messages from Subordinates Subgoals to Subordinates
| 1
Meta-Controller | Scheduler |
ontro|
Plan Next
Agenda ratlo
Heasoning
Agenda Manager ognitive: Executor
0 Eve
| Communication IF |

Figure 15. DICAM Individual Controller Reference Architecture - Domain Control and Meta-
Control

A central feature of the environment being built by Cimflex/Teknowledge is the use of Knowledge-
Based Design Advisors to provide advice, impose policies, and automate testing and design. It is
expected that these can be effectively used for determining the most general requirements of the
system as well as the most specialized. The DICAM architecture is based on the NASREM
architecture and shares the problems of a fixed hierarchy of components for each implementation.
Also, while it is expected that architecture-based reuse and generation of components will ease the
integration process, the Teknowledge architecture relies on heuristics and experimentation to
integrate logical models with continuum models. For large-scale high-safety, high-assurance
systems, the experimentation approach for verification and validation does not have a path to
success.

The individual controller reference architecture is being further specialized as a Generic
Architecture for the Advanced Howitzer (see Figure 16). Initial portions of the howitzer
architecture have been coded. Live demonstrations have been given of the use of the ADSE to
capture the lower levels of the howitzer architecture and demonstrate features of the ADSE. One
specific need being addressed in the howitzer architecture is support for construction of crew
decision aids as well as integration of such higher-level functions with low-level continuous-time
controllers. One of the crew decision aids being developed is the Reconnaissance, Selection, and
Occupation of Position (RSOP). Such applications are expected to be developed using a process-
based application development model which represents processes as networks of actions and
results and mixed-initiative, policy-driven control of process execution, modification and
enforcement.

29

Intformation Base

& World Model l
Battalion Higher
Headquarters
Firing Battery
Battery Batte
HQ = Her
Vehicle / [e | \
Chief of | Chief of
System Section S;eithL
o fS—
Sub- : Loadin Drivin
s;’stom Control| g > g
CaFr)non Tracker | [JGripper] Steering |
ire - Engine
™ TLXEEt Manipulator | m Cogtrol
Cannon
Elevation |
Teknowledge/Stanford

Figure 16. Specializing the Generic Architecture for the Advanced Howitzer

3.2.2.2 Discussion of Loral architecture:
The Loral effort is termed the DSSA Avionics Domain Architecture Generation Environment
(ADAGE) project. The DSSA-ADAGE domain architecture development environment supports
analysis and generation of avionics components using modules for Avionics Architecture:

» Profile generation

+ Navigation

+ Flight Director

+ Control

The DSSA-ADAGE environment model is used to provide information on selected and derived
data including: _ ' '

« Data Source Objects (DSOs) are manipulated in the environment

» Logical Data Source Objects (LDSOs) combine multiple sensor inputs

» Derived data is computed from sensor values

The DSSA-ADAGE system configuration is determined at build time. Build time features include:
» Sensors for selection during operation

Choice of a variety of filters

Selection criteria for navigation modes and guidance modes

Parameter values for filter constants, time constants,...

* o o

The Loral effort has focused on creation of a DSSA engineering process for creation of avionics
software with an emphasis on generation of components which comply with specifications. Like
the NASREM and DICAM architectures, the DSSA-ADAGE architecture shares the problems of a
fixed hierarchy of components for each implementation. Also like the NASREM and DICAM
architectures, while it is expected that architecture-based reuse and generation of components will
ease the integration process, the Loral architecture relies on heuristics and experimentation to
integrate logical models with continuum models.

3.2.2.3 Discussion of Honeywell architecture:

30

Honeywell views the DSSA program as resulting in a Guidance Navigatio'n and Control (GNC)
product line reference architecture which can be specialized into instances of a product line (e.g. an
air-to-air missile GNC or an aircraft GNC). Honeywell views the DSSA Development process as

a sequence of:
+ Capture domain model (define problem space),
« Capture reference architecture (define solution space), and
« Reduce to product through iterative refinement of the problem space and solution space.

The information flow necessary to produce instances of the GNC architecture is shown in Figure

’ Honeywell/lUmd DSSA
Example Information Flow

Guidance, Navigation & Control Resource Scheduling and Allocation

ControlH Stability, Scheduling, Feasibility,
Specification Robustness, Binding, Utilization,
Sensitivity Redundancy Critical Times,
* Maximum Times
Control Control Kernel Schedule
Generator Analyzer Compiler Analyzer
Task Timing Task Code) T
~Otg=
Model Dispatching &
Communication
Tables & Code
Kernel Ada Executable
Template >

Figure 17. Information flow for intelligent GNC development

In Figure 17, the guidance, navigation and control side of the information flow represents the
control engineers view of the product line instantiation problem while the resource scheduling and
allocation side of the information represents the computer science view of the problem.

The technical themes of the Honeywell effort are:

«Architectures based on formal models,

- accurate analytic/what-if capabilities

- design synthesis/optimization capabilities

- scalable/parametric architectures

- abstract specification languages

- enhanced reliability, reduced verification and validation
¢ Multiple integrated views

- comprehensive requirements coverage

- skill-specific views
- requirements-specific views

31

- support for system trade-offs & optimization
+ Layered, scalable architectures and open toolset to enhance reuse in related domains.

Honeywell Aerospace Compiled Kernel Toolset

Source Modules

Source

Program Reuse
Library Library
Application
Specifications
Standard Specification
Delivery Entry/Editor
Formatter
Delivery I /
Format Application Security
1 Bullder Application Analyzor
_ Workspace :
Load l
Image
Kernel
<=1 Generator ftwa;;:;i::dware
Reliability Timing
Analyzer Analyzer

Figure 18. Honeywell Compiled Kernel toolset

The Honeywell approach is to initially use a ControlH toolset, where the primary Architectural
Representation Language is block diagrams to capture the control architecture. The ControlH
language features: mixed visual/textual (common user interface), connection (declarative) language,
generic operators, structured/hierarchical operators, type inferencing, switches and conditionals,
nonlinear look-up functions, first class operators and timing and implementation specifications. A
Compiled Kernel toolset is being created to aid in the instantiation of the control architecture in a
specific configuration (see Figure 18).

It is intended that the Compiled Kernel toolset will produce a multiprocessor load image meeting
the application specification. Honeywell does not claim to have a proposed graphical syntax, just a
convenient pseudo-graph notation. Specifically, ControlH provides a way to perform functional
parameterization and specification of the execution path. The execution path can be represented
graphically as a sequence of blocks to be executed. The sequence of blocks represent a process.
Processes can be executed concurrently but modules are sequential and modes are exclusive.
Processes can share data through monitors and pass data through messages. Processes can be
periodic or aperiodic. Movement from a periodic to an aperiodic process is determined by an event
(see Figure 19). Experiments are conducted to determine the role played by “mode switching.”

32

Honeywell Modes and Process Sharing

Periodic

essage Periodic

Process

Perlodic
Process

Periodic
Process

Aperiodic
Process

Figure 19. Honeywell modes and process sharing

Mode switching supported by the Honeywell Compiled Kernel Toolset is fully synchronous and is
a mechanism (no data exchange) to enable fundamental changes in processing such as:

» Change in the number of processors, or

+ Change in sampling rate.

Honeywell sees future reliable real-time issues as:
» Scheduling
- static hard-real-time communication and event scheduling
- separate output and state update preemptive scheduling
- aperiodic communications
- discrete-event dynamic systems
event sequencing and timing specifications
queuing and stochastic performance
» Reconfiguration
- reactive systems/adaptive scheduling
- on-line reconfiguration and load shifting
+ Verification & Validation / Certification
- component verification reuse
- architecture verification

33

- automated verification
+ Execution path and timing analysis & estimation

The Honeywell tools provide extensive support for modeling and implementing switching-mode
control. Deciding when to switch between modes of control remains a matter of experimentation
and engineering heuristics. '

3.2.3 Discussion of Defense Information System Agency Architecture

OPERATIONAL EXPERIENCE & FEEDBACK

l I - STANDARD DATA
o DETAILED REQUIREMENTS
1 | MISSION-SPECIFIC NEEDS
GENERIC & INFO. INFO. SYSTEM
COMMON SYSTEM SYSTEM oPS
NEEDS ARCH. [P pvLPMT . >

SERVICES AND STANDARDS, COMPONENTS & CONFIGURATIONS

[] - LIFE-CYCLE PROCESS
- SUPPORT FOR LIFE-CYCLE PROCESS

Figure 20. Technical Architecture Framework for Information Management (TAFIM)

The Department of Defense Technical Architecture Framework for Information Management
(TAFIM) is the guidance for future information system development through use of Integrated
Computer-Aided Software Engineering (ICASE) tools, application of Information Technology for
Reuse (ITRUS), reuse of software stored in the Defense Software Repository (DSRS), and
application of standard data elements stored in the Defense Data Repository (DDRS). The TAFIM
requires repeated application of reference architectures to provide generic and common needs as
part of the support for software life-cycle processes. The TAFIM is the top-level guidance for
evolution of DoD enterprise (business) software and has been recommended for use in planning
for the (national-scale) Advanced Distributed Simulation (ADS) system being constructed to
support DoD in planning for a broad range of defense functions, including: (1) training and
readiness, (2) requirements definition, (3) prototyping, (4) program planning, (5) design and
manufacturing, and (6) test and evaluation. The Defense Information Systems Agency (DISA) is
currently using the IDEF-0 and IDEF-1 modeling approaches for creating business process
models.” Unfortunately IDEF does not support capture of continuum processes. Thus the models
must be augmented in some fashion to be used for ADS.

34

3.3 Development of supporting technologies for enterprise integration:
3.3.1 Enterprise Integration Technology (EIT):

EIT is a small business that was formed as a spinoff from Stanford University and is focused on
the creation of network solutions for enterprise integration. A consortium led by EIT has recently
won a Technology Reinvestment Program (TRP) award to develop infrastructure for use of the
National Information Infrastructure (NII) to support enterprise integration.

3.3.2 Enterprise Integration Network (EINet):

Two years ago the Microelectronics and Computer Corporation (MCC) formed the Enterprise
Integration Network (EINet) to facilitate creation of virtual companies. The intent is to provide
network services to support small businesses to bid on requests for proposals which they would
otherwise not be aware of or able to pursue. The enabling mechanism is to use networks to rapidly
share information on opportunities, form transitory alliances for the purpose of answering the
requests for proposals, maintain the alliance during execution of the resulting contract, and
dissolve the alliance upon completion of the work. The MCC goal is to eventually support all
250,000 small businesses in the US.

3.3.3 Open Software Foundation Distributed Computing Environment (OSF
DCE):

The Open Software Foundation Distributed Computing Environment (OSF DCE) is a vendor-
neutral distributed computing infrastructure standard which supplies essential distributed
computing services necessary to provide enterprise integration at the highest levels in the
enterprise. These services are:

. A directory service which can locate entities anywhere throughout the enterprise,

. A security service which can verify the identity and authority levels of users throughout

. the enterprise, and
. A communications service which allows users and applications to communicate with
other applications or to access data throughout the enterprise.

Companies are offering tools to assist businesses in using DCE to implement client-server
solutions for integration of business functions. For instance, The Open Environment Corporation
offers the Surround product as a means of implementing the Remote Procedure Calls for client-
server applications. OEC specifically recommends a three-tiered client-server architecture (Figure
21).

Presentation Functionality DCE Data

Layer Layer Layer

Figure 21. Three-tiered client/server architecture
3.4 Other hybrid systems research activities
Interest in hybrid systems has increased rapidly since John James and Robert Grossman

coordinated invited sessions at IEEE Conferences on Decision and Control (CDC) in 1992 and
1993. Panos Antsaklis and Michael Lemmon subsequently organized an invited session on hybrid

35

systems for CDC '94. Anil Nerode organized a workshop on hybrid systems at Cornell in 1992
resulting in a Springer-Verlag text on hybrid systems. In 1993, MIT organized an ARO-sponsored
workshop to discuss, among other topics, the differential geometry of Hybrid systems. At the
MIT meeting, Wolf Kohn, Anil Nerode and Roger Brockett presented models for infinitesimal
controls in the hybrid domain. In 1994, at Harvard , a follow-on workshop was held in which the
computability issues of infinitesimal controls for hybrid systems via dynamic programming was
discussed. Wolf Kohn, Anil Nerode, Michael Branicky and Albert Benveniste presented analysis
of the chattering solution proposed by Kohn and Nerode in 1992. Wolf Kohn prepared lecture
notes for the Graduate Course in Hybrid Control offered, for the first time, at UC, Berkeley by
Pravin Varaiya and Shankar Sastry. Anil Nerode has organized this workshop at Cornell and
another Springer-Verlag volume is expected. Program Committee members for this second
meeting are: Anil Nerode, Panos Antsaklis, Amir Pnueli, Shankar Sastry, Pravin Varaiya, Wolf
Kohn, and John James.

4. Overview of use of MAHCA for enterprise-wide control.

We have provided a detailed statement of the manufacturing planning, scheduling, and control
problem in MAHCA terms. We have developed similar statements of complex computer-
controlled systems for:

+ Transportation,

* Cruise missile control,

+ Crew station control ,

¢ Medical informatics,

o Communications, ,

» Military Command and Control,

In the next section we will provide a brief overview of the architecture development work being
conducted for the military command and control problem.

5. Military Command and control.

The Army intends to field a digital division by 1998. Capabilities of the digital division are yet to
be fully determined. However, it is expected that future Army combat operations will increasingly
involve coalition forces and that future Army missions will increasingly require conduct of
operations other than war (OOTW), such as peacemaking, peacekeeping, humanitarian support,
and humanitarian relief. Current plans to reduce force structure is driving the Army to investigate
increasing flexibility of existing units to support a wide range of missions.

Innovative use of barriers to decrease mobility of opposing forces and active use of barriers to
cause opposing forces to move in desired directions has been a historic discriminator between
success and failure in war. Barriers, such as intelligent mines are often used to channel opposing
forces into an area where they can be engaged by direct and indirect fire weapons of the combined
arms team. Successful demonstration of command and control of advanced mines will provide
commanders with a flexible, lightweight means of increasing combat effectiveness. The Army
experts in mine warfare determine the critical operational issues and criteria for success of the
intelligent minefield. Future efforts to coordinate results of our current demonstration of target
engagement with the intelligent minefield would provide an opportunity to test concepts for
dominating the maneuver battle with concepts for operational use of intelligent mines.

‘Architecture Development: We have participated in a limited scope effort to demonstrate

MAHCA in support of engaging multiple targets with multiple weapons platforms. The limited
scope multiple agent demonstration has led to simplifications of the environment and the
operational context. The intent is to demonstrate the major objectives of the Domain-Specific

36

Software Architecture (DSSA) program without being required to commit excessive resources to a

high-fidelity model. Our specific objectives in the project have been to:

. Expand the generic architecture previously developed for multiple-agent hybrid control of
distributed, real-time processes

. Create a reference architecture for engagement processes

. Demonstrate on-line rescheduling of real-time processes

Demonstrate parameter adaptation of architecture parameters in the presence of model

parameter uncertainty

. Demonstrate structural adaptation (i.e. automatic adaptation of the sharing of system control

between structurally different models) in the presence of model structural uncertainty

. Demonstrate use of the Equational Reactive Inferencer syntax as an appropriate architectural
description language for simultaneously capturing the logic and the dynamics of the target
engagement domain.

p—

(@)} 9] S Lo

Battlefield Environment Model:

The elements of the proposed demonstration are: (1) a Battlefield Environment, and (2) the
controlling agents. We discuss these elements next.

The battlefield environment (see Figure 22) consists of a Universe (a prespecified region of the
plane, i.e. a closed surface of R2): two types of objects (Friendly objects and Foe objects), and the
rules which determine the reaction (the evolution of the state over time) of friend or foe objects
given the current state (of friend and foe objects) and the context of the operational situation (set of
logical inputs). The set of possible battlefield scenarios is the set of sequences of friend and
foe actions (from initiation of the battlefield simulation until the friend and foe objects are in a
terminal state) and associated contexts. For the purposes of this demonstration, we will have a
limited set of friendly tank objects (always three objects) and foe objects (initially three tanks and
two scouts) and a limited number of rules (equational clauses - see Section 5.1.1 and [44]) which
determine the evolution of the state of the system. The model is deliberately constructed in order to
reflect some of the actual conditions which occur on the battlefield but only at a level necessary to
demonstrate the reasoning and behavioral capabilities of multiple-agent hybrid control.
Specifically, we insert a fourth control agent to provide supervisory control of the three tanks.
Supervisory control actions are limited to assignment of sectors of fire and allocation of targets to
engage (actual decisions to fire are made by the local control agents for each tank). For purposes
of the demonstration we simulate results of engagement decisions but in an actual system the
program would be used in an advisory role.

While the structure of the demonstration and the scope of multiple-agent hybrid control theory
admit the construction of a high-fidelity model we will not achieve that in this demonstration.
What we will achieve is a unification of logic and evolution equations describing the engagement of
multiple targets by multiple weapons. The logic equations often used by computer scientists to
define finite state machines ignore system dynamics and the differential operator equations used by
engineers ignore system logic. We apply an established optimization procedure (relaxed variational
control - see [13]) to the system of equations describing our hybrid control architecture to extract
an optimization automaton after appropriate embedding of the logic equations in the continuum
representation. This result will demonstrate the on-line extraction of automata which implement
distributed, intelligent, real-time control. The simple model is discussed below.

37

Universe\ ‘

Friendly system Foe systen\

Y. W4
LAY ARAN

- - - o ow

Friendly
Sector of Fire
#1

Friendly
Sector of Fire
#2

Friendl
Sector of Fire

i
/
]
!
i
1
'
J
|
!
1
/
L)
]
]
1
]
i
J
’
i
!

V8

O— Friendly Tank Object [] Foe Scout Object

3= Foe Tank Object Control Agent Object
Figure 22. Battlefield Environment

Friendly command and control is limited to one commander (a Control Agent) making decisions
based on battlefield sensors (Information Gatherer) and (noisy) information concerning friend and
foe situation. Friendly weapons are fixed and consist of direct fire weapons or smart mines (both
labeled Attack System). Information concerning enemy activity is obtained from battlefield sensors
aggregated into an agent labeled Information Gatherer. Thus, there are three friendly,
hierarchically organized objects; two low-level objects each labeled Attack System and a high level
object labeled Information Gatherer.

In the scenario there are two types of enemy objects. Both types of enemy objects are crew-served
vehicles. These vehicles are labeled Scout objects and direct-fire weapon systems (labeled Active
objects) respectively. There is a variable number of foe objects (this number is specified at the
beginning of a demonstration).

We will refer to the collection of three friendly objects as the Friendly System and the collection of
foe objects as the Foe System.

The goal of the Friendly System is to coordinate the use of its assets (the three Attack systems. See
Figure 22) to maximize the damage (Kill Probability) inflicted on the Foe System with admissible
survivability (Survival Probability). The goal of the foe system is to detect the assets of the
friendly system and to destroy them The location of each of the Friendly objects in the coordinates
of the universe is fixed. Each of the Foe objects follows prespecified (autonomous) trajectories in
the Universe. friendly system acquires knowledge about position and perhaps the velocity of each
of the Foe Objects via noisy sensors.

38

The Friendly System is controlled by a MAHCA controller composed of three agents. Each of the
objects in the Friendly System, the two Attack Systems and the Information Gatherer are controlled
by a MACHA agent. The battlefield scenario is illustrated in Figure 22.

We conclude this overview of our proposed model with a discussion of the script we are
developing for the demonstration. The general idea is for the agents to implement on-line a
coordinated Reactive, adaptive policy [44] to 'win' the battle. This means achieving the highest
kill probability over the prespecified duration of the script.

The actions of the control agent of each of the Attack objects are of two types : tracking, via a
noisy sensor, of a particular foe object, selected by the control agent of the Information Gatherer,
and command firing against the foe object under tracking. The Information gatherer decision
domain includes an action to transfer the tracking action of a foe object to tracking another one. In_
an attack agent, the decision to engage a foe object is solely a function of the relation between the
local kill and survival probabilities relative to the foe object under tracking and the global kill and
survivabilities of the friendly system inferred by the information gatherer control agent. The
demonstration will have two level of agents with three agents controlling the three platforms in the
simulation and a fourth MAHCA agent coordinating the activities of the other three. While
consideration has been given to having one or more control agents coordinate primarily with a
smart mine agent, the simulation will model three tanks as the friendly platform agents. Future
expansions of the demonstration will support one of the MAHCA tank controller agents sending
high-level guidance to the single-agent controller of a test fixture at Picatinny Arsenal. The major
elements of the demonstration are: (1) A simulation of the battlefield environment comprised of
friend and foe systems (running on a SPARC-10?), (2) An interface between the battlefield
simulation and the MAHCA agents, (3) MAHCA agents running on separate 586 machines, (4) the
single-agent controller performing low-level control under the guidance of a MAHCA agent, (5)
LabView as the interface software to enable the sensors and actuators. The engagement scenario is
summarized below.

Battlefield Environment (Engagement Scenario):

1) Five targets at 5 locations going on 5 different paths:
a). Tank on a crossing pattern
b) Scout on a diagonal, jinking pattern
¢) Tank on a jinking, inbound pattern
d) Helicopter hovering and slow crossing
e) Helicopter on a jinking pattern inbound and diagonal

2) Three platforms at three fixed locations with three different sensor
suites and capability suites:

a) Tank with suite a

b) Tank with suite b

¢) Tank with suite ¢
3) The three platforms are controlled by three agents

The three agents are coordinated by a higher-level agent

One of the three agents obtains input from one of the platforms in the simulation world and sends
appropriate commands to a single-agent controller which controls the test fixture.

4) An engagement scenario consists of:

39

a) Targets moving on preassigned patterns. Some targets may be capable of detecting
observation by active sensors. All targets will certainly detect engagement by friendly forces and
may elect to engage or disengage.

b) Each of the three platforms:
(1) Detect targets using onboard sensors
(2) Identify targets
(3) Provide data to a controlling agent
(4) Select target to engage or are assigned a target by the
coordinating agent
(5) Track selected target
(6) Engage target
(7) Assess engagement and reengage or select another target

5) Sensors need to be simulated in the battlefield environment. While data was provided for optical
sensors, provision should be made in the data structure for other types of sensors:
a) Optical including
(1) Optical magnification
(2) Detection range
(3) Recognition range
(4) Identification range
(5) Field of View
b) Thermal (data similar to optical)
c) Millimeter wave (data similar to optical)
d) Once target is detected, assume sensor provides azimuth and range information

6) Nominal pointing parameters:
a) Maximum acceleration
b) Maximum slew speed
¢) Minimum smooth tracking slew speed (to avoid stiction)
d) Pointing accuracy (see Figure 23)
e) Use nominal parameters to allocate error budget
f) Data provided for ATAC, M1A1, Leopard, Centurion, and Apache

7) Total system error data:
a) Engagement accuracy can be divided into two elements: dispersion and bias
(1) Dispersion data accounts for differences in wind, ammunition, statistical deviations in
system performance
(2) Aiming bias can throw off engagement accuracy much more unexpectedly than aiming
dispersion. Aiming bias increases with maneuvering target and distance to target (increased time of
projectile flight)

8) Angular acceleration data influences aiming bias. Can get angular acceleration data from tracker
(the test fixture or the simulated sensor) but it is HARD to get accurate numbers for a maneuvering
target (double the standard deviation for a non-maneuvering target).

9) Assume a circular target for calculation of probability of hit. Translate angular error data into a
hit probability.

10) The interface is very clean between the multiple agents and the simulation of the platforms and
the targets in order to be able to use the interface solution to drive other simulation software.

11) Once a platform has fired, the subsequent hit probabilities go way down since the target will
begin maneuvering. :

40

12) The simulation begins with targets coming into the detection range of the sensors and ends
with the attackers or defenders being eliminated.

Figure 20. A foe object engaging a friendly object

6. Summary

We have developed a canonical representation of interacting networks of controllers. Given a
connectivity graph with N nodes (controllers) and the corresponding agent's knowledge bases, a
network of 2N agents can be constructed with the same input-output characteristics, so that each
agent interacts only with another (equivalent) companion agent, whose knowledge base is an
abstraction of the knowledge in the network. Thus, in general, the multiple-agent controller for
any network configuration is reduced to a set of agent pairs.

One agent of the agent pair maintains coordination with other agent pairs across the network. We
call that agent of the pair which represents network information the Thevenin Agent, after the
author of a similar theorem in electrical network theory. The proof carried out by the Thevenin
Agent generates, as a side effect, coordination rules that define what and how often to
communicate with other agents. These rules also define what the controller needs from the
network to maintain intelligent control of its physical plant.

41

Our approach develops a canonical way to prove the theorem characterizing the desired behavior
for each agent by constructing and executing on-line a finite state machine called the "proof
automaton.” The inference process is represented as a recursive variational problem in which the
criterion is an integral of a function called the Generalized Lagrangian. The Generalized
Lagrangian maps the Cartesian product of equational rules and inference principles to the real line,
thus effectively providing a hill-climbing heuristic for the inference strategy of the theorem prover.
In MARC the inference steps play a role analogous to action signals in conventional control, while
vector fields on the manifold M constitute generators of feedback laws.

References

1 J. S. Albus, C. McLean, A, Barbera, M. Fitzgerald, "An Architecture for Real-Time
Sensory-Interactive Control of Robots in a Manufacturing Environment," 4th IFAC/IFIP
Symposium on Information Control of Robots in Manufacturing Technology,
Gaithersberg, MD, Oct. 1982.

[2] A.J. Barbera, J.S. Albus, M.L. Fitzgerald, and L.S. Haynes, "RCS: The NBS Real-Time
Control System," Robots 8 Conference and Exhibition, Detroit, MI, June 1984.

[3] J.S. Albus, H.G. McCain, and R. Lumia, "NASA/NBS Standard Reference Model for
Telerobot Control System Architecture (NASREM)," NIST (formerly NBS) Technical
Note 1235, April 1989 Edition.

(4] J.S. Albus, andR. Quintero "Toward a Reference Model Architecture fir Real-Time
Intelligent Control Systems (ARTICS)," Proceedings of the Workshop on Software Tools
for Distributed Intelligent Control Systems, Charles J. Herget ed. September 1990.

[5] J.S. Albus, R. Quintero, R. Lumia, M. Herman, R. Kilmer, and K. Goodwin, "Concepts
for a Reference Model Architecture for Real-Time Intelligent Control Systems (ARTICS),"
NIST Technical Note 1277, April, 1990.

[6] R. Quintero, "Toward an Intelligent Control Systems Development Methodology,"
Proceedings of the JSGCC Software Initiative Workshop, 1-4 December 1992. Guidance
and Control Information Analysis Center (GACIAC) PR92-03.

[7] Kohn, W., J. James, and A. Nerode, "Multiple-Agent Reactive Control of Distributed
Interactive Simulations (DIS) Through a Heterogeneous Network," Proceedings of the
Army Research Office Workshop on Hybrid Systems and Distributed Interactive
Simulations, Research Triangle Park, NC 28 Feb. - 1 Mar. 1994.

(8] Kohn, W., J. James, A. Nerode, K. Harbison, and A. Agrawala, "A Hybrid Systems
Approach to Computer-Aided Control System Design," Proceedings of the Joint
Symposium on Computer-Aided Control System Design, Tucson, AZ, 7-9 March
1994,

[9] Nerode, A., and W. Kohn, “Multiple Agent Declarative Control Architecture”, Hybrid
Systems, Springer Verlag, 1993, Volume 736, R. L. Grossman, A. Nerode, T.
Rischel, A. Ravn, eds.

[10] Kohn, W and A. Nerode, "Models for Hybrid Systems: Automaton, Topologies, Control,

Controllability, Observability", Hybrid Systems, Springer Verlag, 1993, Volume 736, R.
L. Grossman, A. Nerode, T. Rischel, A. Ravn, eds.

42

[11]
[12]

[13]

[15]
[16]

[17]
(18]

[19]
[20]

[21]

(22]
(23]
[24]
[25]
(26]
[27]

(28]

Computer Science and Telecommunications Board, National Research Council, Realizing
the Information Future: The Internet and Beyond, National Academy Press, Washington,
D.C., 19%4.

Nerode A., Kohn W., " Multiple Agent Autonomous Control: A Hybrid Systems
Architecture" Logical Methods In Honor of Anil Nerode's Sixtieth Birthday,
Crossley , J. B. Remmel, M. E. Sweedler, Eds., Birkhauser, Boston, 1993.

Kohn W. and Nerode A. "Multiple Agent Hybrid Control Architecture" MSI Report 93-11
Cornell U

Young, L.C. “Optimal Control Theory” Chelsea Publishing Co., NY, 1980.

Nerode A. and W. Kohn " An Autonomous Systems Control Theory: An Overview" Proc.
IEEE CACSD'92, March 17-19 Napa Ca.

Kohn, W. “Declarative Hierarchical Contrdllers” Proceedings of the Workshop on
Software Tools for Distributed Intelligent Control Systems, pp 141-163, Pacifica, CA,
July 17-19, 1990.

Kohn, W. and T. Skillman “Hierarchical Control Systems for Autonomous Space Robots”
Proceedings of AIAA Conference in Guidance, Navigation and Control, Vol. 1, pp 382-
390, Minneapolis, MN, Aug. 15-18, 1988.

Kohn, W. “A Declarative Theory for-Rational Controllers” Proceedings of the 27th IEEE
CDC, Vol. 1, pp 131-136, Dec. 7-9, 1988, Austin, TX.

"DSSA Guidelines Draft 0.1", Proceedings of the DSSA Workshop IX, Teknowledge
Federal Systems, MD, 28-29 March, 1994,

Kohn, W., J. James, A. Nerode, and J. Lu “Multiple-Agent Hybrid Control Architecture
for the Target Engagement Process (MAHCA-TEP - Version 0.2 of MAHCA-TEP:
Technical Background, Simulation Requirements, and Engagement Model”, Intermetrics
Technical Report, 25 August 1994.

Kohn, W. “Rational Algebras; a Constructive Approach” IR&D BE-499, Technical
Document D-905-10107-2, July 7, 1989.

Kohn, W. "Declarative Control Architecture” CACM Aug 1991,Vol34, No8.

Skillman, T., W. Kohn, et.al. “Class of Hierarchical Controllers and their Blackboard
Implementations” Journal of Guidance Control & Dynamics, Vol. 13, N1, pp 176-182,
Jan.—Feb., 1990.

Lloyd, J.W. “Foundations of Logic Programming” second extended edition, Springer
Verlag, NY, 1987.

Kohn, W. “The Rational Tree Machine: Technical Description & Mathematical
Foundations” IR&D BE-499, Technical Document D-905-10107-1, July 7, 1989.

Mesarovic, M. and Y. Tashahara “Theory of Hierarchical Multilevel Systems” Academic
Press, NY, 1970.

Kowalski, R. “Logic for Problem Solving” North Holland, NY, 1979.

43

(29]
[30]

(31]

[32]

(33]

[34]

[35].

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Robinson, J.A. “Logic: Form and Function” North Holland, NY, 1979.

Kohn, W. “Rational Algebras; a Constructive Approach” IR&D BE-499, Technical
Document D-905-10107-2, July 7, 1989.

Kohn, W. “The Rational Tree Machine: Technical Description & Mathematical
Foundations” IR&D BE-499, Technical Document D-905-10107-1, July 7, 1989.

Skillman, T., W. Kohn, et.al. “Class of Hierarchical Controllers and their Blackboard
Implementations” Journal of Guidance Control & Dynamics, Vol. 13, N1, pp 176-182,
Jan.—Feb., 1990.

Kohn, W. “Application of Declarative Hierarchical Methodology for the Flight Telerobotic
Servicer” Boeing Document G-6630-061, Final Report of NASA-Ames research service.
request 2072, Job Order T1988, Jan. 15, 1988.

Kohn W. " Multiple Agent Inference in Equational Domains Via Infinitesimal Operators”
Proc. Application Specific Symbolic Techniques in High Performance Computing
Environment". The Fields Institute, Oct 17-20 1993.

Kohn W., and Nerode A., "Multiple- Agent Hybrid Systems" Proc. IEEE CDC 1992, vol
4, pp 2956, 2972.

Hoard, J., and W. Kohn, “A Relational Model of Natural Language Semantics”, to be
released as a Boeing Technical Report.

Kohn, W. "Distributed Hybrid Controller Architecture,” Proceedings of Hybrid Systems
and Autonomous Control, Mathematical Sciences Institute, Cornell University, Ithaca, NY,
28-30 Oct, 1994. ‘

Landauer, C, and K. L. Bellman, "New Mathematics for Computing (a new initiative),"
Proceedings of Hybrid Systems and Autonomous Control, Mathematical Sciences Institute,
Cornell University, Ithaca, NY, 28-30 Oct, 1994. :

Mettala, E. G., James, J. R., Coleman, N., Gallagher, E. J., Harris, R. L., Smith, J. G,
and Graham, M. "Domain-Specific Software Architectures: Government Needs and
Expectations." Presented at the [EEE Symposium on Computer-Aided Control System
Design, Napa, CA 17-19 March, 1992.

Tracz, W., and Coglianese, L. "An Adaptable Software Architecture for Integrated
Avionics" ADAGE-IBM-93-03. IBM Federal Systems Division.

Hayes-Rith, F., Erman, L. D., Terry, A., and Hayes-Roth, B., "Distributed Intelligent
Control and Management (DICAM) Applications and Support for Semi-Automated
Development." Proceedings of AAAI-92 Workshop on Automating Software
Development, San Jose, CA, 1992.

Vestal, S. " Integrating Control and Software Views in a CACE/CASE Toolset,"
Proceedings of the Joint IEEE/IFAC Symposium on Computer-Aided Control System
Design, Tucson, AZ, 6-9 March, 1994.

Report, Defense Science Board Task Force on Simulation, Readiness and Prototyping, Dr.
Joseph V. Braddock and General Maxwell R. Thurman, Co-Chairmen, 21 December
1992.

(44]

[45]

[46]

[47]

[48]

Teknowledge Federal Systems, "DSSA Guidelines Draft 0.1," Proceedings of the DSSA
Workshop IX, 28-29 March, MD, 1994.

RIG Proposed Standard "A Uniform Data Model for Reuse Libraries (UDM)," Reuse
Library Interoperability Group, 20 January, 1994.

RIG Technical Rep}ort "Measuring Reuse Library Interoperability: Applying the GQM
Paradigm," Reuse Library Interoperability Group, 20 January, 1994.

Kohn, W., J. James, and A. Nerode, "Multiple-Agent, Hybrid Control Architecture: A
Generic, Open Architecture for Incremental Construction of Reactive Planning, Scheduling
and Control Systems for Manufacturing," Intermetrics White Paper, October 1994.

Kohn, W., A. Nerode and J. Remmel, "Multiple-Agent Control of Hybrid Systems,"
March, 1994.

45

-,

Al

Appendix A: Equational Logic Language

Hybrid Systems Language Requirements: A formal language that encodes hybrid systems
must be able to express: evolution models, logic models, interfaces of evolution and logic
models, behavior requirements, and real time constraints.

Evolution Models: An evolution model is a composite of 3 items: An Evolution Domain, a Set of
Transformations on that domain and Boundary Conditions.

Evolution Domain: The domain of a Hybrid system is always a Manifold, called the Carrier
Manifold or domains derived from it such as vector bundles, jet spaces, congruence
manifolds etc. (vector spaces are the simplest examples of manifolds). A manifold is a set
of points S together with a countable set of maps, called Coordinate Maps. The domain of
each coordinate map is an open subset of S, the range is an open subset in a Euclidean
space. The coordinate maps are specified by a set of Generic and Particular properties. The
generic properties are common to all manifolds. The particular properties describe
characteristics of each application. Given these properties and the set S the manifold is
completely determined. Thus, a language expressing hybrid systems must provide
primitives for encoding sets and coordinate transformation properties. Moreover it must
provide means to express domain items that depend on the manifold (ex: tangent spaces,
vector bundles, submanifolds, immersions, jet spaces, products of manifolds, etc.).
Transformation Set: A transformation is an item that transforms a point or points in the
manifold to another point or points. Examples include differential (ordinary or partial)
equations, difference equations, a stochastic process, integral equations, algebraic
transformations, a variational expression, an algorithm, a set of rules and conjunctions or
disjunctions of the above. Without loss of generality, a set of transformations generate
Trajectories in the carrier manifold or in its associated domains. Thus, the language of
hybrid systems must be able to express transformations, and the outcome of
transformations (namely trajectories). Note that in general trajectories are infinite objects so
the language must exhibit the capabilities to express infinite objects with finitary
representations (example; flows).

Boundary Conditions: These are standard initial or constraint items for the transformations
defined above. They define subdomains within the manifold or its associated domain items.

Logic Models: A logic model is an object composed of three items: A Logic Domain, an Axiom
Base and A Proof or Discrimination System.

*

Logic Domain: The domain of the logic model are certain classes of trajectories of evolution
models on the carrying manifold called relaxed curves The state of a hybrid system and its
behavior are relaxed curves. These curves must possess certain properties (If the hybrid
system is a model of a control problem these properties are requirements). A language for
hybrid systems must have primitives for encoding, manipulating, connecting and
transforming Relaxed Curves. In the Kohn- Nerode theory a central result states that
relaxed curves can be expressed by one or more strings of the form g(X, ...,Y) rel p(X,
...,Y) with p and q algebraic expressions in a certain algebra and re/ one of three relational
connectives: equal =, not equal #, and partial order <.

Axiom Base: The Axiom Base is an encoding of the properties listed above, together with
the axioms of algebraic logic with equality, and the axioms of properties of the logic
operators (and, or , <=, not) and the properties of certain class of operators, called
Inference operators that transform elements of the domain into other elements of the
domain. For example unify, which implements Robinson unification, transforms a set of

_ relaxed curves into a relaxed curve whose properties are common to the set. The Axiom

base also encodes properties of the hybrid system as a whole (global properties) The central
ones are Stability, Controllability, Goal Reachability, Observability, and Self-Awareness.

46

.

s Proof System: The proof System is a formal representation of the "Intelligence" of the
hybrid model. It uses the axiom base to generate Relaxed curves that correspond to the
behavior of the system. It encodes a strategy (Monotone Dynamic Programming in the
Kohn Nerode Theory) for the effective construction of relaxed curves that characterize the
behavior of the hybrid system if they exist or Modification instructions (to the model) if they
do not exist.

Interface: The interface between Evolution Models and Logic models characterizes the central
property for well-posedness of hybrid models: continuity of behavior trajectories (relaxed curves)
in the carrier manifold. By continuity we mean that the Transformation that maps the requirements
encoded in the axiom base to the space of behavior trajectories in the manifold or its derivatives is
continuous. When one talks about continuity, one must specify a topology; In hybrid systems the
topology is the topology of the carrier manifold which is fully determined once the coordinate maps
are defined. In our approach to hybrid systems the axiom base must define the coordinate maps at
each instant. A formal language for hybrid systems must contain primitives and a composition
strategy for expressing desired continuity definition. For example, in the commercial airplane
problem, desired continuity is that the behavior trajectories be such that "a coffee cup 3/4 full in
any location of the airplane should not spill (relative topology).”

Behavior Requirements: Language requirements for a scenario-based approach for determining
system requirements and expressing these results in a formal language have been studied.
Descriptions about primitives for expressing scenario-based behavior requirements are summarized
in [17]. Also, these primitives are described in the Hybrid Systems book recently published.
However we emphasize here two primitives that the behavior requirements must specify; these are
the Generalized Lyapunov stability check and the goal reachability check. Both of these can be
written as equations with variables in the space of relaxed trajectories. Each of these equations
have non-empty solution sets only if the corresponding properties are satisfied.

Real Time constraints: These are equational forms that characterize the computer environment. A
language for hybrid systems must have primitives that express real-time frames, infinitesimal
concurrency, relaxation level, "sufficiently good paradigms", any time computing, etc. These real-
time constraint primitives must be expressible in terms of continuity.

47

